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ABSTRACT: 

In recent centuries, a number of indirect data 

collection methodologies have led to the proliferation of 

uncertain data. Such data points are often represented in the 

form of a probabilistic function, since the corresponding 

deterministic value is not known. The modeling of imprecise 

and qualitative knowledge, as well as handling of uncertainty 

at various stages is possible through the use of fuzzy sets. 

Fuzzy logic is capable of supporting to a reasonable extent, 

human type reasoning in natural form by allowing partial 

membership for data items in fuzzy subsets. Integration of 

fuzzy logic and kl divergence in data mining has become a 

powerful tool in handling natural data. Introduce the concept 

of fuzzy clustering and also the benefits of incorporating 

fuzzy logic with kl divergence in data mining. Finally it 

provides a comparative analysis of fuzzy clustering 

algorithms namely association rule based fuzzy. 

 

Keywords- Regression testing, Test case selection, Fuzzy 

logic, Selection probability. I.       

 

 INTRODUCTION: 

Fuzzy regression is the common term which is 

required for the proper functioning of the system. 

Maintenance of the fuzzy cluster is mainly concerned with 

the related modifications to the system. These modifications 

may be due to changing user needs, error correction, 

improved performance, adaptation to changed environment, 

optimization etc. This adaptation of the fuzzy cluster system 

to data mining makes a completely modified fuzzy cluster 

system. Modified system breaks the previously verified 

functionalities of the system, which causes faults.  This 

requires fuzzy cluster regression testing for detecting such 

faults. Studies show that fuzzy cluster maintenance activities 

on an average account for two third of the overall fuzzy 

cluster cost. Fuzzy cluster maintenance is frequently 

required to fix defects, enhance or adapt the existing 

functionalities of the fuzzy cluster. One necessary 

maintenance activity is regression testing, which is the 

process of validating modified fuzzy cluster in order   to   

provide   confidence t h a t    the   fuzzy cluster   behaves 

correctly and the modification has not lead to degradation  

Of fuzzy cluster quality. The dominant strategy for 

performing regression testing is to  rerun  the  test  cases  

that  are  available  from  the  earlier version of the fuzzy 

cluster. Regression testing is expensive, often accounts for 

almost one-half of the total cost of fuzzy cluster 

maintenance [1]. Running all the test cases in a test suite 

requires a large amount of effort and time.   A report 

shows that it took 1000 machine hours to execute 

approximately 30,000 functional test cases. Hundreds of 

man-hours are spent by test engineers to monitor the process 

of regression testing [2]. For this reason minimization of 

regression testing effort for reducing fuzzy cluster 

maintenance costs has become an issue of considerable 

practical importance. After development and release, fuzzy 

cluster undergo regress maintenance phase [3]. 

 

A.  Regression Testing 

(RT) 

It is an integral part of the fuzzy cluster development 

method. RT is defined as “the process of retesting the 

modified parts of the fuzzy cluster and ensuring that no new 

regression errors have been introduced into previously 

unmodified part of the program”. Regression test end up 

forming a safety net that makes refactoring easier and 

maintenance work less scary. It is associated with system 

testing only when there is the change in the code. 

 

There are various RT techniques shown in fig.1: 
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  Fig 1: Techniques of Regression Testing 

 

1)     Retest all: It is one of the conventional methods of 

regression techniques. This method reruns all the test 

cases in the test suite. But, it consumes excessive time and 

resources as compared to other techniques. 

2)  Regression Test Selection (RTS): Due to expensive 

nature of “retest all” technique an alternative approach 

called Regression Test Selection or we can say selective 

retest is performed [4].In this technique instead of rerunning  

the whole test suite, it selects a subset of valid test cases 

from an initial test suite that are necessary to test the 

modified program [5].It attempts to reduce the time required 

to retest a modified program and also reduces the testing 

costs in environment where the program undergoes frequent 

modifications. Formally, RTS problem is defined as follows: 

 Let P be an application program and P’ be a modified 

version of P. Let T be the initial test suite for testing P. 

An RTS technique aims to select a subset of test cases T’ 

subset of T to be executed on P’, such that every error 

detected when P’ is executed with T is also detected when P’ 

is executed with T’ [6]. 

RTS consists of two major activities: 

i) Identification of the affected part.  

ii) Test Case Selection. 

RTS divides the existing test suite into Obsolete, 

Retestable, and Reusable test cases [7]. 

 

- Obsolete test cases are not valid for the modified 

program. 

 

- Retestable test cases execute the modified and 

the affected parts of the program and need to be 

rerun during regression testing. 

 

- Reusable test cases execute only the unaffected 

parts of the program. 

 

RTS techniques are broadly classified into three 

categories: 

 

i.       Coverage-based selection technique: 

 

It locates program components that have been modified 

or affected by modifications, and select test cases that 

exercise those components. 

 

ii.       Minimization-based selection technique: 

 

Similar  to  coverage techniques except  that  they  select  

the smallest subset of test cases that can satisfy some 

minimum coverage criteria for the modified parts of the 

code [8][9][10][11]. 

 

iii.       Safe Selection Technique: 

 

Minimization techniques omit some fault-revealing test 

cases. To eliminate the possibility of missing faults, safe 

selection technique was introduced. It selects every test in T 

that can expose one or more faults in P’. It guarantees that 

the discarded test cases do not reveal faults [12] [13]. 

 

3)     Regression Test Prioritization (RTP): It orders 

the test cases in such a way that the overall rate of fault 

detection increases. Test cases having higher fault 

detection capability are given higher priority and are taken 

up for execution earlier. It is very much advantageous as 

the errors are detected and reported to the development 

team earlier. 

 

4)     Hybrid Approach: It is the combination of both 

RTS and RTP. 

 

B.  Fuzzy Logic 

Fuzzy logic is a convenient way to map an input space 

to output space through fuzzy inference process. It is 

basically a multivalued logic which permits intermediate 

values to be defined between conventional evaluations. 

Fuzzy logic gives the ability to quantify and   reason   with   

words   having ambiguous meanings. That is why it is the 

best choice for managing contradicting, doubtful and 

ambiguous opinions. 

 

Fuzzy logic is formed with the combinations of four 

concepts as shown in fig.2: 

 

 
 

Fig.2: Fuzzy Concepts 

 

Fuzzy sets are expressed as the set of ordered pairs [14] 

as shown in equation (1): 

 

A = {(x, µA(x)) | x ε X, µA(x): X Æ [0, 1]}     (1) 
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Where A is the fuzzy set, (x, µA(x)) is the membership 

function and rest is the universe of discourse. Example: 

Word like Good. There is no single value which can define 

the term well; it differs from person to person. It has no 

clear boundary. 

 

Simple way of forming membership functions is using 

straight lines. In this paper we have used triangular 

membership function, which is a simplest form using 

straight lines. It is the collection of three points forming a 

triangle. Logical operations are used to combine more than 

one inputs and conditions together for inference. There are 

three main logical operators namely AND, OR and NOT. 

For all possible combinations of the inputs If-Then rules are 

framed. The overall fuzzy process is shown in fig.3. 

This paper proceeds by describing the related work and 

previous works on regression testing and fuzzy logic in 

the next section. Section 3 discusses factors for test case 

selection probability estimation. Section 4 presents the 

proposed.  Section 5 presents the implementation of the 

model , and 

Section 6 discusses overall conclusion and future work. 

 

 

 

 

Fig.3: Stages of Fuzzy logic processing 

 

II.      RELATED WORK 

Fuzzy cluster testing tells whether a program is 

correct, by showing that it produces correct output over 

some finite subset of input. When we develop fuzzy cluster 

we use development testing, when we modify fuzzy cluster 

we retest it, which is called as RT.  It serves many purposes 

with the primary one to increase confidence in the 

correctness and locate errors in the modified program. 

Development testing and RT is different from each other in 

many aspects: 

 

- Development test requires creation of test suites, 

whereas regression test uses existing test suites. 

 

- Development test requires testing of all fuzzy 

cluster components whereas regression test only 

test modified part and the part which is affected by 

the modification. 

 

- Development test gets time for testing whereas 

regression test is performed in crisis situation, 

under time constraints. 

 

- Development test is costly, performed only once 

whereas RT is performed many times. 

 

Research on RT spans a wide variety of topics. The 

issue that has seen the greatest amount of research, however, 

is the selective retest problem.  The process of finding 

minimal subset of test cases that can cover each element of 

the system started in the year 1977 by K. Fischer in his 

paper “A Test Case Selection Method for the Validation of 

Fuzzy cluster maintenance modifications” [15]. Later this 

technique was extended in the year 1981 by Fischer, Raji 

and Chruscicki. They had given a methodology for retesting 

modified fuzzy cluster [16].   Yau   and   Kishimoto   had   

given   “A   method   for revalidating modified programs in 

the maintenance phase” in the year 1987 [17]. In this a 

selection method was presented that depends on input 

partitions, and uses symbolic execution to determine tests 

that traverse modified blocks. Their method relies on 

knowledge of modifications, and is computationally 

expensive due to the use of symbolic execution. Ostrand and 

Weyuker had done analysis for regression techniques using 

dataflow-based regression testing methods in September 

1988 [18].  Lewis,  Beck  and  Hartmann  had  proposed  a  

tool  to support  regression  testing  in  September  1989  

[19].  The greatest drawback of these methods is that they 

require prior knowledge of modifications. Leung and White 

provided insights into regression testing in October 1989 
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[7] and given a model to compare regression testing 

strategies in 1991. Binkley used semantic differencing to 

reduce the cost of regression testing in November 1992 

[20]. Chen, Rothermel and Vo provided a system for 

selective regression testing in 1994 [21]. Rothermel and 

Harrold had analyzed the regression testing selection 

techniques in August 1996 [22] and given a safe, efficient 

regression test selection technique in 1997 [23]. In 2001 

Rothermel, Untch, Chu and Harrold had provided a 

technique for prioritizing test cases for regression testing. 

Yoo and Harman had given method for multi-objective test 

case selection in 2007 and in 2012 they had discussed open 

problems and given potential directions of future research in 

their survey of regression testing minimization, selection 

and prioritization techniques [24]. Engstrom, Runeson and 

Skoglund systematically reviewed the regression test 

selection techniques in January 2010. Amir Ngah had 

proposed a model for RTS using the decomposition slicing 

technique in his PhD thesis on RTS by exclusion in 

May 2012 [25]. In July, 2012 Siavash Mirarab et.al  

H a d  given a  multicriterion s basedmization for size-

constrained RTS [26]. In the same month Jianchun Xing et.al 

had given a safe RTS based on program dependence graphs 

of a program and its modified version [27]. Prevus research 

in the field of RTS has not focused on industrial contexts. 

Alex Augustsson in 2012 had introduced a framework for 

evaluating RTS techniques in industry [28]. 

 

Research on Fuzzy was first proposed by L. Zadeh 

in his paper “Fuzzy Sets” in the year 1965 [29]. More 

information about fuzzy logic was given by Klir and Folger 

in 1988. They had given uncertainty and information on 

fuzzy sets [30]. W. Pedycz had given fuzzy control and 

fuzzy systems in 1993 [31]. In the very next year Driankon, 

Hellendour and Reinfark had added to fuzzy control [32]. 

Finally in the 1999, Novak, Perilieva and Mockor had 

given the mathematical principles of fuzzy logic [33]. 

Researches using fuzzy logic for the purpose of 

regression test case selection and prioritization are very scant. 

Xu, Gao and Khoshgoftaar had firstly shown the application 

of fuzzy expert system in regression test selection in 2005 

[34]. Later in 2011 Praveen, Sirish and Raghurama of BITS 

pilani had given fuzzy criteria for assessing the fuzzy cluster 

testing effort [35]. In 2012 Ali M. Alakeel had proposed a 

fuzzy test cases prioritization technique for regression testing 

with assertions [36] and also fuzzy logic was used for 

prioritizing test cases for GUI based fuzzy cluster [37]. 

Recently, in 2013 H.B. Gupta et.al used fuzzy logic for 

regression technique [38].In  our  paper  we  use  fuzzy rule  

base  for  the  test  case selection probability estimation [39]. 

 

 III.FACTORS FOR TEST CASE 

SELECTION PROBABILITY ESTIMATION 

 

We have taken three main factors to calculate the selection 

probability of a test case: 

A.    Code covered 

 B.     Execution    

C.    Class covered 

There may be many more factors which may be taken up 

for this calculation but these are the three main factors 

which have the most effect. 

 

A. Code covered 

This indicates the portion of the code covered by a 

particular test case. This may be number of lines covered 

by the test case, number of statements covered by the test 

case, number of functions covered and number of program 

branches covered. Test cases with highest level of code 

coverage are run first. We selected code covered as a factor 

for estimating the test case selection probability because it 

is believed that the test cases which cover more code have 

higher rate of fault detection  

 

B.  Execution time  

This indicates the time required for a particular test case 

to complete its execution [41]. It may or may not include 

the loading time. Test cases having minimum execution 

time are given weightage and are executed first. We selected 

execution time  as  a  factor  for  estimating  the  test  case  

selection probability because it helps in selecting and 

reordering the execution  of  test  cases  ensuring  that  

defects  are  revealed earlier in the test execution phase. 

Hence, ET ∞ 1/ test case selection probability 

 

C.  Faults covered  

Similar to code covered it indicates the number of faults 

covered by a particular test case. Basically, it tells about the 

number of uncovered faults. Test cases which are capable of 

detecting or we may say covering more number of faults are 

taken up for execution first. We selected faults covered as a 

factor for estimating the test case selection probability 

because it is the most important parameter to be considered 

during testing [42]. More the number of faults is detected by 

a particular test case more effective will be that test case. 

Hence, FC test case selection probability 

 

IV.    PROPOSED MODEL 

This paper gives a Regression Test Case Selection 

Technique based on fuzzy model, which uses the factors 

listed under section 3 for estimating the test case selection 

probability. Individual value of any factor may not provide 

the appropriate value for selection probability. So we use 
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fuzzy rule based approach which considers all the factors 

and their relative values simultaneously for estimating the 

selection probability. The basic fuzzy inference is expressed 

as shown in fig.4. 

 

The model used in this paper contains three inputs 

namely code covered, execution time, faults covered and 

one output i.e. selection probability. For all the inputs and 

output, membership functions are chosen and the values 

for each membership functions corresponding to each inputs 

and output is defined. 

In this concept clustering of an object can be established with 

the fuzzy based on the different inputs. The membership 

function which allows partial cluster and this increases the 

efficiency also. When compared to distance based clustering rule 

based clustering gives powerful result and thus probability 

estimation gives in this model 

 

A.  Membership functions and values for 

Inputs 

Here, Code covered = CC; Execution time = ET; 

Faults covered = FC 

 

 

 

 

 

 

LOW;            0 ≤ CC ≤ 0.38 

 

µA (CC) = MEDIUM; 0.32 ≤ CC ≤ 0.65 

 

HIGH;         0.62 ≤ CC ≤ 1 

 

 

               

             LOW;              0≤1 

 

µA (ET) =       MEDIUM;     0.24 ≤ ET ≤ 0.59 

 

HIGH;           0.52 ≤ ET ≤ 1 

 

LOW;            0 ≤ FC ≤ 0.34 

 

VERY LOW;   0 ≤ SP ≤ 0.14 

 

    LOW;              0.12 ≤ SP ≤ 0.33 

 

µA (SP) = MEDIUM;       0.29 ≤ SP ≤ 

0.56 

 

         HIGH;               0.51 ≤ SP ≤ 0.71 

 

VERY HIGH;   0.65 ≤ SP ≤ 1 
 

 

C. Rule  

It is basically a storage space associated with the model, 

which stores the knowledge related to the subject in the 

form of “If-Then” rules. Rules are formed with the 

composition of inputs and output, and each rule individually 

represents a condition-action statement in human 

understandable format. In this paper we consider all possible 

combinations of inputs getting a total of 3
3 

= 27 sets. 

Based on these 27 sets of combinations a total of 27 rules 

are formed to constitute a complete rule base for the model. 

Some of the rules are as shown in fig.5. 
 

The membership values are defined based on the data 

collected from the classroom projects. The rules are formed 

on the basis of the collected data and expert advice. 
 

In this model we use ‘Mamdani’ style for inference, one of 

the two available fuzzy inference systems. For combining 

together all the obtained results we use MAX method. 
 

D.   Working of the model 

This model works as: 
 

Step 1) Inputs corresponding to each factor is taken in crisp 

format, and is converted into fuzzy form. 
 

Step2) Based on the membership functions value 

corresponding to each input factors, appropriate rule 

is fired. 
 

Step 3) All inputs are taken together simultaneously, for 

this we use AND operator in order to combine the 

inputs together. 
 

Step 4) MIN method is used for evaluating AND operator. 
 

Step 5) All the results obtained is aggregated using MAX   

method       
 

Step 6) Finally, the aggregated result is defuzzified using 

centroid method. 

Step 7) Step 1 to step 6 is repeated for different inputs. 

Model one by one. The appropriate rule is fired 

based on the input values and the output for the 

selection probability is produced for each pair of 

input values.  

Considering an example, let the inputs be: 
 

Code covered = 0.63; Execution time = 0.25; Faults 

covered = 0.54 
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These are the crisp inputs. So, firstly we convert 

these crisp values into fuzzy values. 
 

A.fuzification 
 

It is seen from fig.6 that the value 0.63 belongs to both 

MEDIUM and HIGH set. So we need to get the fuzzy 

values corresponding to both MEDIUM and HIGH set. 
 

Let ‘x’ represents the crisp values and ‘y’ represents the 

fuzzy values. Here, x = 0.63 and y =??? 
 

For MEDIUM, end-points of the corresponding line is: 

[(0.45, 1) and (0.65, 0)] 
 

So, equation (2) gives the equation of the line 

as: 
 

(y – y1) = {(y2 – y1) / (x2 – x1)} * (x – x1) 

(2) 

Here, (x1, x2) and (y1,, y2) are the end-points of the 

line. so, y = [{(0-1) / (0.65-0.45)} * (0.63-0.45)] + 1 

or, y = [(-5) * (0.18)] + 

1 or, y = 0.1 

For  HIGH,  end-points  of  the  corresponding  line  is: 

[(0.62,0) and (0.75,1)] 
 

So, equation (3) gives the equation of the line 

as: 
 

(y – y1) = {(y2 – y1) / (x2 – x1)} * (x – x1)                   

(3) Here, (x1, x2) and (y1, y2) are the end-points of the 

line. So, y = [{(1-0) / (0.75 – 0.62)} * (0.63-0.62)] +0 

Or, y = [(7.6923) * (0.01)]+ 

0 or, y = 0.0769  
 

Similarly, the fuzzy value for the other two inputs is 

found. 
 

2) Execution Time: It is 0.0588 in MEDIUM set and 0.3333 

in LOW set. 
 

3) Faults Covered: It is 0.4545 in MEDIUM set and 0.1995 

in HIGH set. 
 

 

B. Rule Selection 

Based on these values the rules fired are: 
 

Here, VL = Very Low, L = Low, M = Medium, H = 

High and VH = Very High 
 

Code covered == M) & (execution time == L) & (faults 

covered == M) => (selection probability = H). 

 

Code covered == M) & (execution time == L) & (faults 

covered == H) => (selection probability = VH). 

 

Code covered == M) & (execution time == M) & (faults 

covered == M) => (selection probability = M). 

 

Code covered == M) & (execution time == M) & (faults 

covered == H) => (selection probability = H). 
 

Code covered == H) & (execution time == L) & (faults 

covered == M) => (selection probability = H). 
 

Code covered == H) & (execution time == L) & (faults 

covered == H) => (selection probability = VH). 
 

Code covered == H) & (execution time == M) & (faults 

covered == M) => (selection probability = H). 
 

Code covered == H) & (execution time == M) & (faults 

covered == H) => (selection probability = VH). 

 

C. Rule Evaluation 
 

As shown in fig.7, the selection probability medium, high 

and very high category. Therefore, 

1) µselection probability=M= max [min {µcode covered=M 

(0.63), µexecution time=M (0.25),  

µfaults covered=M (0.54)}]= max [min {0.1, 0.0588, 0.4545}] 

= 0.0588 

2) µselection probability=H=Max [min {µcode covered=M 

(0.63), µexecution time=L (0.25), 

µfaults covered=M (0.54)}, min {µcode covered=M (0.63), 

µexecution time=M (0.25), = max [0.1, 0.0769, 0.0588] = 

0.1 

 

 

D. Defuzzification 
 

The above obtained fuzzy output is finally put to 

defuzzification in order to get the crisp value against 

the output variable selection probability. Out of several 

methods available for defuzzification we choose the 

Centroid method [44].  

  In this the Centre of Gravity (COG) is 

calculated for the area under the curve using equation: 

µfaults covered=H (0.54)}, min {µcode covered=H (0.63), 

µexecution time=L (0.25), 

µfaults covered=M (0.54)}, min {µcode covered=H (0.63), 

µexecution time=M (0.25), 

µfaults covered=M (0.54)}] 
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= max [min {0.1, 0.3333, 0.4545}, 

min {0.1, 0.0588, 0.1905},  

min {0.0769, 0.3333, 0.4545}, 

min {0.0769, 0.0588, 0.4545}] 

= max [0.1, 0.0588, 0.0769, 0.0588] 
 

= 0.1 
 

3) µselection probability=VH=max [min {µcode covered=M 

(0.63), µexecution time=L (0.25), 

µfaults covered=H (0.54)}, min {µcode covered=H (0.63), 

µexecution time=L (0.25), 

µfaults covered=H (0.54)}, min {µcode covered=H (0.63), 

µexecution time=M (0.25), 

µfaults covered=H (0.54)}]= max [min {0.1, 0.3333, 

0.1905}, min {0.0769, 0.3333, 0.1905}, min {0.0769, 

0.0588, 0.1905}] 

 
 

V. EVALUATION 

 

The proposed rules were also processed with the 

designed fuzzy model in MATLAB; the selection 

probability against each input values were found (shown as 

modeled selection probability in table 1). For the purpose of 

evaluation we used the Root Mean Square Error (RMSE) 

method, which is used to measure the difference between 

the actual obtained value from the calculation that is being 

modeled and the value predicted by the model. RMSE is 

defined as the square root of the mean squared error as 

shown in equation  

VI. CONCLUSION 

This paper proposed a fuzzy model for estimation of the 

selection probability for regression test case. The model 

estimates the probability based on three important factors 

namely code covered, execution time and faults covered. 

The fuzzy approach is used to combine these inputs and 

reach at the estimation of the probability for selecting a 

test case. Fuzzy logic is a powerful tool which gives the 

ability to quantify with the contradicting, doubtful and 

ambiguous opinions. The selection of factors has been made 

based on some expert advice. However the results obtained 

are very close to the actual results. The only limitation is 

that, in this paper we have considered only three important 

test case selection factors. However there may be few more 

factors, which may be added. There may be the number of 

extensions of the model by using techniques like artificial 

neural network and neuro fuzzy approach. This is left as 

future work. 
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