PHYTO-ASSISTED SYNTHESIS OF SILVER NANOPARTICLES (AGNPS), CHARACTERIZATION, AND SCREENING THEIR ANTIMICROBIAL ACTIVITIES
Abstract
The present study aims to develop a cost-effective and eco-friendly method for synthesizing silver nanoparticles (AgNPs) using Alistonia sp. leaf extract. The AgNPs were characterized using various physicochemical techniques, including Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), and UV-visible spectroscopy. The UV-visible spectroscopy analysis revealed maximum absorption at 440 nm, which is characteristic of AgNPs' surface plasmon resonance. Transmission electron microscopy (TEM) and SEM confirmed the spherical shape of the nanoparticles, with an average diameter of 20 nm. DLS and zeta potential measurements were conducted on the fabricated AgNPs. The zeta potential was determined to be -34.7 mV, indicating the stability of the nanoparticles due to their strong negative surface charge. In vitro studies using Petri plates evaluated the antifungal, antibacterial, and nematicidal properties of biofabricated silver nanoparticles (AgNPs) against A. flavus, M. tuberculosis and M. incognita. At a concentration of 500 µg/mL, the AgNPs exhibited significant antifungal, antibacterial, and nematicidal activity. The synthesized AgNPs at 500 µg/ml showed 6% J2 juvenile mortality after 24h, 16% after 48h, and 29% after 72h. Around a 58% reduction in hatching has been reported after 72h. 40-50% reduction in fungal growth at 500 µg/mL AgNPs treatment, and a strong inhibition zone occurs in the petriplate that shows the antibacterial activity of the synthesized nanoparticles.
Downloads
References
G.V. Guiding the design space for nanotechnology to advance sustainable crop production. Nature nanotechnology, 2020, 15(9),801-810.
2. World Fertilizer Trends and Outlook to 2020: Summary Report (Food and Agriculture Organization of the United Nations, 2017).
3. Dolijanović, Ž.; Nikolić, S.R.; Dragicevic, V.; Mutić, J.; Šeremešić, S.; Jovović, Z.; Popović D.J. Mineral composition of soil and the wheat grain in intensive and conservation cropping systems. Agronomy. 2022, 12(6), 1321. https://doi.org/10.3390/agronomy12061321
4. Khan, M.; Popović-Djordjević, J.; Stanković, J.K. Nanomaterials as Effective Fertilizers and Fungicides in Plant Protection for Improving Crop Growth and Inducing Tolerance Against Phytopathogens. In Nanoparticles in Plant Biotic Stress Management (pp. 433-449). 2024, Singapore: Springer Nature Singapore.
5. Alshahrani, A. A.; Alqarni, L. S.; Alghamdi, M. D.; Alotaibi, N. F.; Moustafa, S. M.; & Nassar, A. M. Phytosynthesis via wasted onion peel extract of samarium oxide/silver core/shell nanoparticles for excellent inhibition of microbes. Heliyon, 2024, 10(3).
6. Alqarni, L. S.; Alghamdi, M. D.; Alshahrani, A. A.; Alotaibi, N. F.; Moustafa, S. M.; Ashammari, K., ... & Nassar,
A. M. Photocatalytic degradation of rhodamine-B and water densification via eco-friendly synthesized Cr2O3 and Ag@ Cr2O3 using garlic peel aqueous extract. Nanomaterials, 2024, 14(3), 289.
7. Khan, M.; Khan, A. U.; Moon, I. S.; Felimban, R.; Alserihi, R.; Alsanie, W.F.; Alam, M. Synthesis of biogenic silver nanoparticles from the seed coat waste of pistachio (Pistacia vera) and their effect on the growth of eggplant. Nanotechnology Reviews, 2021, 10(1), 1789-800.
8. Worrall, E. A.; Hamid, A.; Mody, K. T.; Mitter, N.; Pappu, H.R. Nanotechnology for plant disease management. Agronomy, 2018, 8(12), p.285.
9. Shakeel, Q.; Lyu, A.; Zhang, J.; Wu, M.; Li, G.; Hsiang, T.; Yang, L. Biocontrol of Aspergillus flavus on peanut kernels using Streptomyces yanglinensis 3–10. Front. Microbiol. 2018, 9, 1049.
10. Amaike, S.; Keller, N.P. Aspergillus flavus . Annu. Rev. Phytopathol. 2011, 8, 107–133.
11. Khan, M.; Khan, A.U. Plant parasitic nematodes effectors and their crosstalk with defense response of host plants: A battle underground. Rhizosphere, 2021, 17:100288
12. Khan, M.; Siddiqui, Z.A. Interaction of Meloidogyne incognita, Ralstonia solanacearum and Phomopsis vexanson eggplant in the sand mix and fly ash mix soils. Scientia Horticulturae, 2017, 225, 177–184.
13. Moradi R. M.; Pourakbar L.; Moghaddam S. S.; Popović-Djordjević J. The impact of TiO2 nanoparticles on growth, chemical and antioxidant traits of saffron (Crocus sativus L.) exposed to UV-B stress. Industrial Crops and Products, 2019, 137, 137–143.
14. Narware, J.; Singh, S.P.; Manzar, N.; Kashyap, A.S. Biogenic synthesis, characterization, and evaluation of synthesized nanoparticles against the pathogenic fungus Alternaria solani. Frontiers in Microbiology, 2023,14, p.1159251.
15. Durán, N.; Marcato, P. D.; Alves, O. L.; Souza, G.; Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol., 2005, 3, 1–8.
16. Khan, A. U.; Malik, N.; Khan, M.; Cho, Khan, M. H. Fungi assisted silver nanoparticles synthesis and their applications. Bioprocess Biosystem Engineering, 2018, 41,1-20 .
17. Khan, M.; Khan, A.U.; Rafatullah, M.; M. Alam, N. Bogdanchikova and D. Garibo Search for Effective Approaches to Fight Microorganisms Causing High Losses in Agriculture: Application of P. lilacinumMetabolites and Mycosynthesised Silver Nanoparticles. Biomolecules, 2022, 12:174.
18. Tidke, P. R.; Gupta, I.; Gade, A. K.; Rai, M. Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis, IEEE Trans Nanobioscience. 2014, 13(4), 397–402.
19. Emeka,E. E.; Ojiefoh, O. C.; Aleruchi, C. Evaluation of antibacterial activities of silver nanoparticles green- synthesized using pineapple leaf (Ananas comosus). Micron. 2014, 57, 1–5.
20. Kim, Y. S.; Kim, J. S.; Cho, H. S.; Rha, D. S.; Kim, J. M.; Park, J. D.; Choi, B.S.; Lim, R.; Chang, H. K.; Chung,
Y. H.; Kwon, I. H., Jeong, J.; Han, B.S. Yu, I.J. Twenty-eight day oral toxicity, genotoxicity, and gender-related issue distribution of silver nanoparticles in Sprague-Dawley rats, Inhal. Toxicol. 2008, 20, 575–583.
21. Jeong,S. H.; Yeo,S. Y.; Yi, S.C. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J. Mater. Sci. 2005, 40(20), 5407–5411
22. Parveen, A.; Siddiqui, Z. A. Effect of Silver Oxide Nanoparticles on Growth, Activities of Defense Enzymes and Fungal and Bacterial Diseases of tomato. Gesunde Pflanzen, 2023,75(2):405-14.
23. Dasila, K.; Singh, M., Bioactive compounds and biological activities of Elaegnus latifolia L.: an underutilized fruit of North-East Himalaya, India. South African Journal of Botany, 2022,145, 177-185.
24. Khan, A. U.; Khan, M.; Khan, M.M. Antifungal and Antibacterial Assay by Silver Nanoparticles Synthesized from Aqueous Leaf Extract of Trigonella foenum-graecum. BioNanoScience, 2019, 9,597-605
25. Khan, M.; Khan, A. U.; Alam, M. J.; Park,S.; Alam, M. Biosynthesis of silver nanoparticles and its application against phytopathogenic bacterium and fungus. J. Environ. Anal. Chem. , 2020,100(12), 1390-1401.
26. Varghese, R.; Almalki, M.A.; Ilavenil, S.; Rebecca, J.; Choi, K.C. Silver nanopaticles synthesized using the seed extract of Trigonella foenum-graecum L. and their antimicrobial mechanism and anticancer properties. Saudi J. Biol. Sci., 2019, 26(1), 148–154.
27. Alqarni, L. S.; Algamdi, M. D.; Alshahrani, A. A.; Nassar, A.M. Green nanotechnology: Recent research on
bioresource‐based nanoparticle synthesis and applications. Journal of Chemistry, 2022, (1), 4030999.
28. Thao, T. T. P.; Luu, N. T.; Chi, N. L.; Hau, V. T. B.; Thuy, N. T. T. The first phytochemical study of Elaeagnus latifolia in Vietnsam. Vietnam Journal of Chemistry, 2021, 59(3), 376-382.
29. Mecozzi, M.; Pietroletti, M.; Scarpiniti, M.; Acquistucci, R.; Conti, M.E. Monitoring of marine mucilage formation in Italian seas investigated by infrared spectroscopy and independent component analysis. Environ. Monit. Assess. 2012, 184, 6025–6036.
30. Kumar, K., J.; Devi Prasad, A.G. Identification and comparison of biomolecules in medicinal plants of Tephrosia tinctoria and Atylosia albicans by using FTIR. Rom. J. Biophys. 2011, 21, 63–71.
31. Mecozzi, M.; Sturchio, E. Computer Assisted Examination of Infrared and Near Infrared Spectra to Assess Structural and Molecular Changes in Biological Samples Exposed to Pollutants: A Case of Study. J. Imaging 2017, 3, 11.
32. Zhang, Q.; Zhang, S.; Zhu, R.; Qiu, S.; Wu, Y. Synergistic Effect Between Fat Coal and Poplar During Co-Pyrolysis with Thermal Behavior and ATR-FTIR Analysis. In Energy Technology 2018; Sun, Z.; Wang, C.; Guillen, D.P.;Neelameggham, N.R., Zhang, L., Howarter, J.A., Wang, T., Olivetti, E., Zhang, M., Verhulst, D.; et al., Eds.; TMS 2018; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018.
33. Khan, M.; Khan, A. U.; Bogdanchikova, N.; Garibo,D. Antibacterial and Antifungal Studies of Biosynthesized Silver Nanoparticles against Plant Parasitic Nematode Meloidogyne incognita, Plant Pathogens Ralstonia solanacearum and Fusarium oxysporum. Molecules, 2021, 26,2462.
34. Bocate, K. P.; Reis, G. F.; de Souza, P. C.; Junior, A. G. O.; Durán, N., Nakazato, G., ... & Panagio, L.A. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. Int. J. Food Microbiol, 2019, 291, 79-86.
35. Bahrami-Teimoori, B.; Nikparast, Y.; Hojatianfar, M.; Akhlaghi, M., Ghorbani, R., &Pourianfar, H. R. Characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. Journal of Experimental Nanoscience, 2017, 12(1), 129-139.
36. Woo, K.S.; Kim, K.S.; Lamsal, K. et al. An in vitro study of the anti-fungal effect of silve nanoparticles on oak wilt pathogen Raffaelea sp., J. Microbiol Biotechnol. 2009,19(8), 760–764.
37. Alotaibi, N. F.; ALqarni, L. S.; Alghamdi, S. Q.; Al-Ghamdi, S. N.; Amna, T.; Alzahrani, S. S., ... & Nassar, A. M. Green Synthesis of Uncoated and Olive Leaf Extract-Coated Silver Nanoparticles: Sunlight Photocatalytic, Antiparasitic, and Antifungal Activities. International Journal of Molecular Sciences, 2024, 25(6), 3082.
38. Mishra, S.; Singh, B.R.; Singh, A. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing Spot Blotch disease in wheat. PLoS One, 2014, 9(5), 978-81.
39. Vahabi, K.; Mansoori, G.A.; Karimi, S. Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei. Inscience J. 2011,1, 65-79.
40. Abbassy, M. A.; Abdel-Rasoul, M. A.; Nassar, A. M.; & Soliman, B. S. Nematicidal activity of silver nanoparticles of botanical products against root-knot nematode, Meloidogyne incognita. Archives of Phytopathology and Plant Protection, 2017, 50(17-18), 909-926.
41. Kalaiselvi, D.; Mohankumar, A.; Shanmugam, G.; Nivitha, S.; Sundararaj, P. Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode, Meloidogyne incognita. Crop Protection, 2019, 117, 108-114.
42. Heflish, A. A.; Hanfy, A. E.; Ansari, M. J.; Dessoky, E. S.; Attia, A. O.; Elshaer, M. M., ... & Behiry, S.I. Green biosynthesized silver nanoparticles using Acalypha wilkesiana extract control root-knot nematode. Journal of King Saud University-Science, 2021, 33(6), 101516.
43. Parmar, S.; Kaur, H.; Singh, J.; Matharu, A. S.; Ramakrishna, S.; Bechelany, M. Recent advances in green synthesis of Ag NPs for extenuating antimicrobial resistance. Nanomaterials, 2022, 12(7), 1115.
44. Khan, T.; Rahman, Q. I.; Raza, S., Zehra, S.; Ahmad, N.; Husen, A. Nanodimensional materials: an approach toward the biogenic synthesis. In Advances in smart nanomaterials and their applications,2023, (pp. 523-568). Elsevier.
45. Ullah, A.; Lim, S. I. Plant extract‐based synthesis of metallic nanomaterials, their applications, and safety
concerns. Biotechnology and Bioengineering, 2022, 119(9), 2273-2304.
Copyright (c) 2026 IJRDO - JOURNAL OF BIOLOGICAL SCIENCE

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Author(s) and co-author(s) jointly and severally represent and warrant that the Article is original with the author(s) and does not infringe any copyright or violate any other right of any third parties, and that the Article has not been published elsewhere. Author(s) agree to the terms that the IJRDO Journal will have the full right to remove the published article on any misconduct found in the published article.
