POTENTIAL OF MEDIUM TO LONG-TERM FASTING TO TRIGGER AN AUTOIMMUNE RESPONSE THROUGH HYPERAGGRESSIVE AUTOPHAGY

  • Ritwik Raj Saxena University of Minnesota-Duluth
  • Ritcha Saxena University of Minnesota-Duluth
Keywords: Caloric deficit, macroautophagy, aggrephagy, autosis, ribophagy, peroxiphagy, mitophagy, lipolysis

Abstract

Intermittent fasting is a lifestyle intervention that is increasingly gaining traction among the general population. An enhancement in the rate of autophagy is one of the fundamental results of intermittent fasting. Autophagy is a principal intracellular strategy for the maintenance of cellular, somatic, and systemic homeostasis. Gene-based and pharmacological therapeutic modalities which serve to dysregulate autophagy stimulate or exacerbate various diseases in a multiplicity of studies. Consistently, mutations in autophagy-related genetic processes may cause severe human pathologies. We review research and experimental models in order to establish a linkage between autophagy dysfunction to the pathogenesis of some major human disorders, particularly autoimmune disease.

Downloads

Download data is not yet available.

References

1. Cao, W., Li, J., Yang, K., & Cao, D. (2021). An overview of autophagy: Mechanism, regulation and research progress. Bulletin Du Cancer, 108(3), 304–322. https://doi.org/10.1016/j.bulcan.2020.11.004
2. Rubinsztein, D. C., Mariño, G., & Kroemer, G. (2011). Autophagy and aging. Cell, 146(5), 682–695. https://doi.org/10.1016/j.cell.2011.07.030
3. Schuck, S. (2020). Microautophagy – distinct molecular mechanisms handle cargoes of many sizes. Journal of Cell Science, 133(17). https://doi.org/10.1242/jcs.246322
4. Mijaljica, D., Prescott, M., & Devenish, R. J. (2012). The intriguing life of autophagosomes. International Journal of Molecular Sciences, 13(3), 3618–3635. https://doi.org/10.3390/ijms13033618
5. Yamamoto, Y., & Noda, T. (2020). Autophagosome formation in relation to the endoplasmic reticulum. Journal of Biomedical Science, 27(1). https://doi.org/10.1186/s12929-020-00691-6
6. Morel, É. (2020). Endoplasmic reticulum membrane and contact site dynamics in autophagy regulation and stress response. Frontiers in Cell and Developmental Biology, 8. https://doi.org/10.3389/fcell.2020.00343
7. Yoshii, S. R., & Mizushima, N. (2017). Monitoring and measuring autophagy. International Journal of Molecular Sciences, 18(9), 1865. https://doi.org/10.3390/ijms18091865
8. Gong, Q., Wang, H., Yu, P., Qian, T., & Xu, X. (2021). Protective or Harmful: The dual roles of autophagy in Diabetic retinopathy. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.644121
9. Kaleağasıoğlu, F., Ali, D. M., & Berger, M. R. (2020). Multiple facets of autophagy and the emerging role of alkylphosphocholines as autophagy modulators. Frontiers in Pharmacology, 11.
https://doi.org/10.3389/fphar.2020.00547
10. Cuervo A.M., Macian F. Autophagy, nutrition and immunology. Mol. Aspects Med. 2012;33(1):2–13.
doi: 10.1016/j.mam.2011.09.001. https://doi.org/10.1016/j.mam.2011.09.001 [PMC free article] [PubMed] [Cross Ref] [Google Scholar]
11. Chun, Y., & Kim, J. (2018). Autophagy: an essential degradation program for cellular homeostasis and life. Cells, 7(12), 278. https://doi.org/10.3390/cells7120278 [CrossRef] [Google Scholar]
12. Wang, Y., & Wu, R. (2022). The effect of fasting on human metabolism and psychological health. Disease Markers, 2022, 1–7. https://doi.org/10.1155/2022/5653739 [CrossRef] [Google Scholar]
13. MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US); Fasting for a blood test. (n.d.). Available from: https://medlineplus.gov/lab-tests/fasting-for-a-blood-test/
14. Medical definition of fasting. (2021, March 29). RxList. https://www.rxlist.com/fasting/definition.htm (Medical Editor: Charles Patrick Davis)
15. Sanvictores, T., Casale, J., Huecker, M.R. (2023, July 24). Physiology, fasting. StatPearls - NCBI Bookshelf.
https://www.ncbi.nlm.nih.gov/books/NBK534877/#:~:text=Fasting%20is%20a%20practice% 20that,religious%20beliefs%20to%20medical%20testing.
16. Tinsley G. M., La Bounty P. M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutrition Reviews. 2015;73(10):661–674. doi: 10.1093/nutrit/nuv041. [PubMed] [CrossRef] [Google Scholar]
17. De Cabo R., Mattson M. P. Effects of intermittent fasting on health, aging, and disease. The New England Journal of Medicine . 2019;381(26):2541–2551. doi: 10.1056/NEJMra1905136. [PubMed] [CrossRef] [Google Scholar]
18. Osman, F., Haldar, S., & Henry, C. J. (2020). Effects of Time-Restricted Feeding during Ramadan on Dietary Intake, Body Composition and Metabolic Outcomes. Nutrients, 12(8), 2478. https://doi.org/10.3390/nu12082478 [PubMed] [CrossRef] [Google Scholar]
19. Zubrzycki, A., Cierpka-Kmieć, K., Kmieć, Z., & Wrońska, A. (2018). The role of low-calorie diets and intermittent fasting in the treatment of obesity and type-2 diabetes. PubMed, 69(5). https://doi.org/10.26402/jpp.2018.5.02 [PubMed] [CrossRef] [Google Scholar]
20. Ostendorf, D. M., Caldwell, A. E., Zaman, A., Pan, Z., Bing, K., Wayland, L., Creasy, S. A., Bessesen, D. H., MacLean, P. S., Melanson, E. L., & Catenacci, V. A. (2022). Comparison of weight loss induced by daily caloric restriction versus intermittent fasting (DRIFT) in individuals with obesity: study protocol for a 52-week randomized clinical trial. Trials, 23(1). https://doi.org/10.1186/s13063-022-06523-2 [PubMed] [CrossRef] [Google Scholar]
21. Martinez-Lopez, N. et al. System-wide benefits of intermeal fasting by autophagy. Cell Metab. http://dx.doi.org/10.1016/j.cmet.2017.09.020 (2017)
22. Greenhill, C. Metabolic effects of intermeal fasting. Nat Rev Endocrinol 14, 4 (2018). https://doi.org/10.1038/nrendo.2017.153
23. Ahmed, N., Farooq, J., Siddiqi, H. S., Meo, S. A., Kulsoom, B., Laghari, A. H., Jamshed, H., & Pasha, F. (2021). Impact of Intermittent fasting on Lipid Profile–A Quasi-Randomized Clinical Trial. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.596787 [PubMed] [CrossRef] [Google Scholar]
24. Kim, K., Kim, Y. H., Son, J. E., Lee, J. H., Kim, S., Choe, M. S., Moon, J. H., Zhong, J., Fu, K., Lenglin, F., Yoo, J. A., Bilan, P. J., Klip, A., Nagy, A., Kim, J. R., Park, J. G., Hussein, S. M., Doh, K. O., Hui, C. C., & Sung, H. (2017). Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Research, 27(11), 1309–1326. https://doi.org/10.1038/cr.2017.126
25. Bhandari V, Dureja S, Bachhel R, et al. Effect of intermittent fasting on various health parameters in obese type 2 diabetics: a pilot study. Natl J Physiol Pharm Pharmacol. 2022; 12:170–172.
10.5455/njppp.2022.12.08281202120082021 [Crossref] [Google Scholar]
26. Dewar, M. (2023, August 3). Intermittent fasting and glycogen depletion. BarBend.
https://barbend.com/intermittent-fasting-and-glycogen-depletion/
27. Anton, S. D., Moehl, K., Donahoo, W. T., Marosi, K., Lee, S. A., Mainous, A. G., Leeuwenburgh, C., & Mattson, M. P. (2017). Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obesity, 26(2), 254–268. https://doi.org/10.1002/oby.22065
28. López-Ojeda, W., & Hurley, R. A. (2023). Ketone Bodies and brain Metabolism: New insights and perspectives for Neurological Diseases. Journal of Neuropsychiatry and Clinical Neurosciences, 35(2), 104–109.
https://doi.org/10.1176/appi.neuropsych.20230017
29. Izumida, Y., Yahagi, N., Takeuchi, Y., Nishi, M., Shikama, A., Takarada, A., Masuda, Y., Kubota, M., Matsuzaka, T., Nakagawa, Y., Ikoma, Y., Itaka, K., Kataoka, K., Shioda, S., Niijima, A., Yamada, T., Katagiri, H., Nagai, R., Yamada, N., . . . Shimano, H. (2013). Glycogen shortage during fasting triggers liver–brain–adipose neurocircuitry to facilitate fat utilization. Nature Communications, 4(1). https://doi.org/10.1038/ncomms3316
30. Jensen, N. J., Wodschow, H. Z., Nilsson, M., & Rungby, J. (2020). Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. International Journal of Molecular Sciences, 21(22), 8767. https://doi.org/10.3390/ijms21228767
31. Pelley, J. W. (2012). Integration of Carbohydrate, Fat, and Amino Acid Metabolism. In Elsevier’s Integrated Review Biochemistry (Second Edition) 2012, Pages 109-117. https://doi.org/10.1016/b978-0-323-07446-9.00013-1
32. Murray, B, and Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutrition reviews vol. 76,4 (2018): 243-259. doi:10.1093/nutrit/nuy001
33. Taherizadeh, M., Khoshnia, M., Shams, S., Hesari, Z., & Joshaghani, H. (2020). Clinical significance of plasma levels of gluconeogenic amino acids in esophageal cancer patients. Asian Pacific Journal of Cancer Prevention, 21(8), 2463–2468. https://doi.org/10.31557/apjcp.2020.21.8.2463
34. Chourpiliadis, C. (2023, June 5). Biochemistry, gluconeogenesis. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK544346/
35. Palou A., Remesar X., Arola L., Herrera E., Alemany M. Metabolic effects of short-term food deprivation in the rat. Hormone and Metabolic Research. 1981;13(6):326–330. doi: 10.1055/s- 2007-1019258.
36. Torelli, P., Evangelista, A., Bini, A., Castellini, P., Lambru, G., & Manzoni, G. C. (2009). Fasting Headache: A review of the literature and new hypotheses. Headache, 49(5), 744–752. https://doi.org/10.1111/j.1526-4610.2009.01390.x
37. Torelli, P., & Manzoni, G. C. (2010). Fasting headache. Current Pain and Headache Reports, 14(4), 284–291. https://doi.org/10.1007/s11916-010-0119-5
38. Mosek, A., & Korczyn, A. D. (1995). Yom Kippur headache. Neurology, 45(11), 1953–1955.
https://doi.org/10.1212/wnl.45.11.1953
39. Khera, M., Patients with testosterone deficit syndrome and depression. (2013, September 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/24047633/
40. Cienfuegos, S., Corapi, S., Gabel, K., Ezpeleta, M., Kalam, F., Lin, S., Pavlou, V., & Varady, K. A. (2022). Effect of intermittent fasting on reproductive hormone levels in females and males: a review of human trials. Nutrients, 14(11), 2343. https://doi.org/10.3390/nu14112343
41. Alirezaei, M., Kemball, C. C., Flynn, C. T., Wood, M. R., Whitton, J. L., & Kiosses, W. B. (2010). Short-term fasting induces profound neuronal autophagy. Autophagy, 6(6), 702–710. https://doi.org/10.4161/auto.6.6.12376
42. Bagherniya, M., Butler, A. E., Barreto, G. E., & Sahebkar, A. (2018). The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Research Reviews, 47, 183–197.
https://doi.org/10.1016/j.arr.2018.08.004
43. Erlangga, Z., Ghashang, S. K., Hamdan, I., Melk, A., Gütenbrunner, C., & Nugraha, B. (2023). The effect of prolonged intermittent fasting on autophagy, inflammasome and senescence genes expressions: An exploratory study in healthy young males. Human Nutrition & Metabolism, 32, 200189.
https://doi.org/10.1016/j.hnm.2023.200189
44. Shabkhizan, R., Haiaty, S., Moslehian, M. S., Bazmani, A., Sadeghsoltani, F., Bagheri, H. S., Rahbarghazi, R., & Sakhinia, E. (2023). The beneficial and adverse effects of autophagic response to caloric restriction and fasting. Advances in Nutrition, 14(5), 1211–1225. https://doi.org/10.1016/j.advnut.2023.07.006
45. Vincow, E. S., Thomas, R. E., Merrihew, G. E., Shulman, N., Bammler, T. K., MacDonald, J. W., MacCoss, M. J., & Pallanck, L. J. (2019). Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective. Autophagy, 15(9), 1592–1605. https://doi.org/10.1080/15548627.2019.1586258
46. Rabinowitz, J. D., & White, E. (2010). Autophagy and metabolism. Science, 330(6009), 1344– 1348. https://doi.org/10.1126/science.1193497
47. Wang, Y., & Qin, Z. (2013). Coordination of autophagy with other cellular activities. Acta Pharmacologica Sinica, 34(5), 585–594. https://doi.org/10.1038/aps.2012.194
48. Andreotti, D. Z., Silva, J. D. N., Matumoto, A. M., Orellana, A. M., De Mello, P. S., & Kawamoto, E. M. (2020). Effects of physical exercise on autophagy and apoptosis in aged brain: human and animal studies. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00094
49. Impact of sleep on autophagy and neurodegenerative disease: Sleeping your mind clear. (2022). Archives of Molecular Biology and Genetics, 1(2). https://doi.org/10.33696/genetics.1.007
50. Ogłodek, E., & Pilis, W. (2021). Is Water-Only Fasting safe? Global Advances in Health and Medicine, 10, 216495612110311. https://doi.org/10.1177/21649561211031178
51. Lorenzo, I., Serra‐Prat, M., & Yébenes, J. C. (2019). The role of water homeostasis in muscle Function and frailty: a review. Nutrients, 11(8), 1857. https://doi.org/10.3390/nu11081857
52. Tian, Y., Song, W., Li, D., Cai, L., & Zhao, Y. (2019). Resveratrol As A Natural Regulator Of Autophagy For Prevention And Treatment Of Cancer. OncoTargets and Therapy, Volume 12, 8601–8609.
https://doi.org/10.2147/ott.s213043
53. Ghosh, I., Sankhe, R., Mudgal, J., Arora, D., & Nampoothiri, M. (2020). Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders. Neuropeptides, 83, 102083.
https://doi.org/10.1016/j.npep.2020.102083
54. Hung, S. W., Li, Y., Chen, X., Chu, K. O., Zhao, Y., Liu, Y., Guo, X., Man, G. C. W., & Wang,
55. C. C. (2022). Green tea Epigallocatechin-3-Gallate regulates autophagy in male and female reproductive cancer. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.906746
56. Armstrong JL, Hill DS, McKee CS, Hernandez-Tiedra S, Lorente M, Lopez-Valero I, et al. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. J Invest Dermatol 2015 Jun;135(6):1629-1637
57. Koushki, M., Amiri-Dashatan, N., Ahmadi, N. A., Abbaszadeh, H., & Rezaei‐Tavirani, M. (2018). Resveratrol: A miraculous natural compound for diseases treatment. Food Science and Nutrition, 6(8), 2473–2490. https://doi.org/10.1002/fsn3.855
58. Blanchet, J., Longpré, F., Bureau, G., Morissette, M., Di Paolo, T., Bronchti, G., & Martinoli, M. (2008). Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP- treated mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(5), 1243– 1250. https://doi.org/10.1016/j.pnpbp.2008.03.024
59. Kiechl, S., Pechlaner, R., Willeit, P., Notdurfter, M., Paulweber, B., Willeit, K., Werner, P., Ruckenstuhl, C., Iglseder, B., Weger, S., Mairhofer, B., Gärtner, M., Kedenko, L., Chmelíková, M., Stekovic, S., Stuppner, H., Oberhollenzer, F., Kroemer, G., Mayr, M.,... Willeit, J. (2018). Higher spermidine intake is linked to lower mortality: a prospective population-based study. The American Journal of Clinical Nutrition, 108(2), 371–380.
https://doi.org/10.1093/ajcn/nqy102
60. Nishimura, K., Shiina, R., Kashiwagi, K., & Igarashi, K. (2006). Decrease in Polyamines with Aging and Their Ingestion from Food and Drink. Journal of Biochemistry, 139(1), 81–90. https://doi.org/10.1093/jb/mvj003
61. Madeo, F., Bauer, M. A., Carmona-Gutiérrez, D., & Kroemer, G. (2018). Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy, 15(1), 165–168.
https://doi.org/10.1080/15548627.2018.1530929
62. Schroeder, S., Hofer, S. J., Zimmermann, A., Pechlaner, R., Dammbrueck, C., Pendl, T., Marcello, G. M., Pogatschnigg, V., Bergmann, M., Müller, M., Gschiel, V., Ristic, S., Tadić, J., Iwata, K., Richter, G., Farzi, A., Üçal, M., Schäfer, U., Poglitsch, M.,... Madeo, F. (2021). Dietary spermidine improves cognitive function. Cell Reports, 35(2), 108985. https://doi.org/10.1016/j.celrep.2021.108985
63. Lamark, T., & Johansen, T. (2012). Aggrephagy: selective disposal of protein aggregates by macroautophagy. International Journal of Cell Biology, 2012, 1–21.
https://doi.org/10.1155/2012/736905
64. Ma, X., Zhang, W., Deng, H., Zhang, M., & Ge, L. (2022). A biochemical reconstitution approach to identify autophagy receptors for aggrephagy in mammalian cells. STAR Protocols, 3(3), 101662.
https://doi.org/10.1016/j.xpro.2022.101662
65. Sarkar, S., Ravikumar, B., & Rubinsztein, D. C. (2009). Chapter 5 Autophagic Clearance of Aggregate‐Prone Proteins Associated with Neurodegeneration. In Methods in Enzymology (pp. 83–110).
https://doi.org/10.1016/s0076-6879(08)04005-6
66. Rubio-Tomás, T., Sotiriou, A., & Tavernarakis, N. (2023). The interplay between selective types of (macro)autophagy: Mitophagy and xenophagy. In Elsevier eBooks (pp. 129–157).
https://doi.org/10.1016/bs.ircmb.2022.10.003
67. Mao, K., & Klionsky, D. J. (2016). Xenophagy: A battlefield between host and microbe, and a possible avenue for cancer treatment. Autophagy, 13(2), 223–224. https://doi.org/10.1080/15548627.2016.1267075
68. Deretic, V., & Kroemer, G. (2021). Autophagy in metabolism and quality control: opposing, complementary or interlinked functions? Autophagy, 18(2), 283–292. https://doi.org/10.1080/15548627.2021.1933742
69. Gatica, D., Lahiri, V., & Klionsky, D. J. (2018). Cargo recognition and degradation by selective autophagy. Nature Cell Biology, 20(3), 233–242. https://doi.org/10.1038/s41556-018-0037-z
70. Yu, L., Yang, C., & Tooze, S. A. (2017). Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 14(2), 207–215. https://doi.org/10.1080/15548627.2017.1378838
71. Cho, D., Kim, Y. S., Jo, D. S., Choe, S., & Jo, E. (2018). Pexophagy: Molecular mechanisms and implications for health and diseases. PubMed, 41(1), 55–64. https://doi.org/10.14348/molcells.2018.2245
72. Tyagi, P., & Kumar, V. (2021). Ribosome cycle—Assembly, degradation, and recycling. In Emerging Concepts in Ribosome Structure, Biogenesis, and Function Emerging Concepts in Ribosome Structure, Biogenesis, and Function. https://doi.org/10.1016/b978-0-12-816364- 1.00005-6
73. Kraft C, Deplazes A, Sohrmann M, Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol. 2008 May;10(5):602-10. doi: 10.1038/ncb1723. Epub 2008 Apr 6. PMID: 18391941. https://pubmed.ncbi.nlm.nih.gov/18391941/
74. M.A. Hayat, Chapter 1 - Overview of Autophagy, Editor(s): M.A. Hayat, Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging; Academic Press, 2017, Pages 1-122, ISBN 9780128121467, https://doi.org/10.1016/B978-0-12-812146-7.00001-9. (https://www.sciencedirect.com/science/article/pii/B9780128121467000019)
75. Yamamoto, S., Kuramoto, K., Wang, N., Situ, X., Priyadarshini, M., Zhang, W., Córdoba- Chacón, J., Layden, B. T., & He, C. (2018). Autophagy differentially regulates insulin production and insulin sensitivity. Cell Reports, 23(11), 3286–3299. https://doi.org/10.1016/j.celrep.2018.05.032
76. Yang, Z. J., Chee, C. E., Huang, S., & Sinicrope, F. A. (2011). The role of Autophagy in Cancer: therapeutic implications. Molecular Cancer Therapeutics, 10(9), 1533–1541. https://doi.org/10.1158/1535-7163.mct-11-0047
77. Nishida, K., Kyoi, S., Yamaguchi, O., Sadoshima, J., & Otsu, K. (2008). The role of autophagy in the heart. Cell Death & Differentiation, 16(1), 31–38. https://doi.org/10.1038/cdd.2008.163
78. Cowled, P. (2011). Pathophysiology of reperfusion injury. Mechanisms of Vascular Disease - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK534267/https://doi.org/10.1016/j.devcel.2008.08.012
79. Cecconi, F., & Levine, B. (2008). The Role of Autophagy in Mammalian Development: Cell Makeover Rather than Cell Death., 15(3), 344-357.
80. Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, Bonaldo P. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI- deficient muscles. Autophagy. 2011 Dec;7(12):1415-23. doi: 10.4161/auto.7.12.17877. PMID: 22024752; PMCID: PMC3288016.
81. Yun CW, Lee SH. The Roles of Autophagy in Cancer. Int J Mol Sci. 2018 Nov 5;19(11):3466. doi: 10.3390/ijms19113466. PMID: 30400561; PMCID: PMC6274804.
82. Xiao X., Wang W., Li Y., Yang D., Li X., Shen C., Liu Y., Ke X., Guo S., Guo Z. HSP90AA1- mediated autophagy promotes drug resistance in osteosarcoma. J. Exp. Clin. Cancer Res. 2018; 37:201. doi: 10.1186/s13046-018-0880-6.
83. Chavez-Dominguez, R., Perez-Medina, M., López‐González, J. S., Galicia-Velasco, M., & Aguilar-Cázares, D. (2020). The Double-Edge sword of autophagy in Cancer: From tumor suppression to pro-tumor activity. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.578418
84. Lim, S. M., Hanif, E. a. M., & Chin, S. (2021). Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Cell & Bioscience, 11(1). https://doi.org/10.1186/s13578-021-00570-z
85. Hippert, M. M., O’Toole, P. S., & Thorburn, A. (2006). Autophagy in cancer: good, bad, or both? Cancer Research, 66(19), 9349–9351. https://doi.org/10.1158/0008-5472.can-06-1597
86. Towers, C. G., Wodetzki, D., & Thorburn, A. (2019). Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. Journal of Cell Biology, jcb.201909033. https://doi.org/10.1083/jcb.201909033
87. Pang, Y., Wu, L., Tang, C. C., Wang, H., & Wei, Y. (2022). Autophagy-Inflammation interplay during infection: balancing pathogen clearance and host inflammation. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.832750
88. Qian, M., Fang, X., & Wang, X. (2017). Autophagy and inflammation. Clinical and Translational Medicine, 6(1). https://doi.org/10.1186/s40169-017-0154-5
89. Qiao, L., Ma, J., Zhang, Z., Sui, W., Zhai, C., Xu, D., Wang, Z., Lu, H., Zhang, M., Zhang, C., Chen, W., & Zhang, Y. (2021). Deficient Chaperone-Mediated autophagy promotes inflammation and atherosclerosis. Circulation Research, 129(12), 1141–1157. https://doi.org/10.1161/circresaha.121.318908
90. Aguzzi, A., & O’Connor, T. (2010). Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nature Reviews Drug Discovery, 9(3), 237–248. https://doi.org/10.1038/nrd3050
91. Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. 2018 Jan;28(1):3-13. doi: 10.1111/bpa.12545. Epub 2017 Aug 6. PMID: 28703923; PMCID: PMC5739982.
92. Cui B, Lin H, Yu J, Yu J, Hu Z. Autophagy and the Immune Response. Adv Exp Med Biol. 2019; 1206:595-634. doi: 10.1007/978-981-15-0602-4_27. PMID: 31777004; PMCID: PMC7120363.
93. Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol. 2007; 7:767–77. doi: 10.1038/nri2161.
94. Zhou XJ, Zhang H. Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases. Autophagy. 2012 Sep;8(9):1286-99. doi: 10.4161/auto.21212. Epub 2012 Aug 14. PMID: 22878595; PMCID: PMC3442876.
95. Codogno, P., & Meijer, A. J. (2010). Autophagy: A Potential Link between Obesity and Insulin Resistance. Cell Metabolism, 11(6), 449–451. https://doi.org/10.1016/j.cmet.2010.05.006
96. Mei Y, Thompson MD, Cohen RA, Tong X. Autophagy and oxidative stress in cardiovascular diseases. Biochim Biophys Acta. 2015 Feb;1852(2):243-51. doi: 10.1016/j.bbadis.2014.05.005. Epub 2014 May 13. PMID: 24834848; PMCID: PMC4231019.
97. Qin, Q., Qu, C., Niu, T., Zang, H., Qi, L., Lyu, L., Wang, X., Nagarkatti, M., Janicki, J. S., Wang, X. L., & Cui, T. (2016). NRF2-Mediated Cardiac Maladaptive Remodeling and Dysfunction in a setting of autophagy insufficiency. Hypertension, 67(1), 107–117. https://doi.org/10.1161/hypertensionaha.115.06062
98. Aman, Y., Schmauck-Medina, T., Hansen, M., Morimoto, R. I., Simon, A. K., Bjedov, I., Palikaras, K., Simonsen, A., Johansen, T., Tavernarakis, N., Rubinsztein, D. C., Partridge, L., Kroemer, G., Labbadia, J., & Fang, E. F. (2021). Autophagy in healthy aging and disease. Nature Aging, 1(8), 634–650. https://doi.org/10.1038/s43587-021-00098-4
99. Pyo, J., Yoo, S., & Jung, Y. (2013). The Interplay between Autophagy and Aging. Diabetes & Metabolism Journal, 37(5), 333. https://doi.org/10.4093/dmj.2013.37.5.333
100. Tabibzadeh, S. (2022). Role of autophagy in aging: The good, the bad, and the ugly. Aging Cell, 22(1). https://doi.org/10.1111/acel.13753
101. Cheon, S. Y., Kim, H., Rubinsztein, D. C., & Lee, J. E. (2019). Autophagy, cellular aging and age-related human diseases. Experimental Neurobiology, 28(6), 643–657. https://doi.org/10.5607/en.2019.28.6.643
102. Yang, Z., Goronzy, J. J., & Weyand, C. M. (2015). Autophagy in autoimmune disease. Journal of Molecular Medicine, 93(7), 707–717. https://doi.org/10.1007/s00109-015-1297-8
103. Wu, M., Wang, E., Feng, D., Li, M., Ye, R. D., & Lu, J. (2021). Pharmacological insights into autophagy modulation in autoimmune diseases. Acta Pharmaceutica Sinica B, 11(11), 3364–3378.
https://doi.org/10.1016/j.apsb.2021.03.026
104. Kaleağasıoğlu, F., Ali, D. M., & Berger, M. R. (2020b). Multiple facets of autophagy and the emerging role of alkylphosphocholines as autophagy modulators. Frontiers in Pharmacology, 11.
https://doi.org/10.3389/fphar.2020.00547
105. Van Kaer, L., Parekh, V. V., Postoak, J. L., & Wu, L. (2019). Role of autophagy in MHC class I-restricted antigen presentation. Molecular Immunology, 113, 2–5. https://doi.org/10.1016/j.molimm.2017.10.021
106. Fasano, R., Malerba, E., Prete, M., Solimando, A. G., Buonavoglia, A., Silvestris, N., Leone, P., & Racanelli, V. (2022). Impact of Antigen Presentation Mechanisms on Immune Response in Autoimmune Hepatitis. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.814155
107. Deretic, V., Saitoh, T., & Akira, S. (2013). Autophagy in infection, inflammation and immunity. Nature Reviews Immunology, 13(10), 722–737. https://doi.org/10.1038/nri3532
108. Yin H, Wu H, Chen Y, Zhang J, Zheng M, Chen G, Li L, Lu Q. The Therapeutic and Pathogenic Role of Autophagy in Autoimmune Diseases. Front Immunol. 2018 Jul 31; 9:1512. doi: 10.3389/fimmu.2018.01512. PMID: 30108582; PMCID: PMC6080611.
109. Pierdominici M, Vomero M, Barbati C, Colasanti T, Maselli A, Vacirca D, et al. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J (2012) 26(4):1400–12. 10.1096/fj.11-194175
110. Shin YJ, Han SH, Kim DS, Lee GH, Yoo WH, Kang YM, et al. Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res Ther (2010) 12(1): R19. 10.1186/ar2921
111. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet (2007) 39(5):596–604. 10.1038/ng2032
112. Jiang, GM., Tan, Y., Wang, H. et al. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer 18, 17 (2019). https://doi.org/10.1186/s12943-019-0944-z
113. Rozman S, Yousefi S, Oberson K, et al. The generation of neutrophils in the bone marrow is controlled by autophagy. Cell Death Differ. 2015;22(3):445–56.
114. Riffelmacher T, Richter FC, Simon AK. Autophagy dictates metabolism and differentiation of inflammatory immune cells. Autophagy. 2018;14(2):199-206. doi: 10.1080/15548627.2017.1362525. Epub 2017 Sep 13. PMID: 28806133; PMCID: PMC5902226.
115. Merkley, S. D., Chock, C. J., Yang, X. O., Harris, J., & Castillo, E. F. (2018). Modulating T cell responses via autophagy: the intrinsic influence controlling the function of both Antigen- Presenting cells and T cells. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.02914
116. Qian, M., Fang, X., & Wang, X. (2017b). Autophagy and inflammation. Clinical and Translational Medicine, 6(1). https://doi.org/10.1186/s40169-017-0154-5
117. Jiang, G., Tan, Y., Wang, H., Peng, L., Chen, H., Meng, X., L, L., Liu, Y., Li, W., & Shan,
118. H. (2019). The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Molecular Cancer, 18(1). https://doi.org/10.1186/s12943-019- 0944-
119. Disorders, F. O. N. a. N. S. (2013, December 12). Protein aggregation. Neurodegeneration NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK208522/
120. Zhou, X., Verginis, P., Martinez, J., & Radic, M. (2019). Editorial: Autophagy in Autoimmunity. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.00301
121. Shojaie, L., Iorga, A., & Dara, L. (2020). Cell Death in Liver Diseases: A review. International Journal of Molecular Sciences, 21(24), 9682. https://doi.org/10.3390/ijms21249682
122. Sciarretta, S., Forte, M., Frati, G., & Sadoshima, J. (2018). New insights into the role of MTOR signaling in the cardiovascular system. Circulation Research, 122(3), 489–505. https://doi.org/10.1161/circresaha.117.311147
123. Klionsky, D. J., Petroni, G., Amaravadi, R. K., Baehrecke, E. H., Ballabio, A., Boya, P., Pedro, J. M. B., Cadwell, K., Cecconi, F., Choi, A. M., Choi, M. E., Chu, C. T., Codogno, P., Colombo, M. I., Cuervo, A. M., Deretić, V., Đikić, I., Elazar, Z., Eskelinen, E., . . . Pietrocola,
124. F. (2021). Autophagy in major human diseases. The EMBO Journal, 40(19).
https://doi.org/10.15252/embj.2021108863
125. Liu, Y., Levine, B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22, 367–376 (2015). https://doi.org/10.1038/cdd.2014.143
126. Nah, J., Zablocki, D., & Sadoshima, J. (2020). Autosis. JACC: Basic to Translational Science, 5(8), 857–869. https://doi.org/10.1016/j.jacbts.2020.04.014
127. Wang, F., & Muller, S. (2015). Manipulating autophagic processes in autoimmune diseases: A special focus on modulating Chaperone-Mediated Autophagy, an emerging therapeutic target. Frontiers in Immunology, 6. https://doi.org/10.3389/fimmu.2015.00252
128. Tavakol S, Ashrafizadeh M, Deng S, Azarian M, Abdoli A, Motavaf M, Poormoghadam D, Khanbabaei H, Afshar EG, Mandegary A, Pardakhty A, Yap CT, Mohammadinejad R, Kumar AP. Autophagy Modulators: Mechanistic Aspects and Drug Delivery Systems. Biomolecules. 2019 Sep 25;9(10):530. doi: 10.3390/biom9100530. PMID: 31557936; PMCID: PMC6843293.
129. Saxena, R., Carnewale, K., Sharma, K. (2023). Digital Pathology and AI: A Paradigm Shift In Pathology Education. Journal Of Population Therapeutics and Clinical Pharmacologv.
https://doi.org/10.53555/jptcp.v30i4.2672
130. Carnevale, K., Saxena. R., Talmon, G., Lin, A., Padilla, O., Kreisle, R. Pathology Teaching in Different Undergraduate Medical Curricula Within and Outside the United States: A Pilot Study, Academic Pathology (Accepted in revision).
131. Saxena, R., Carnevale, K., Yakymovych, O., Salzle, M., & Sharma, K. Precision, Personalization, and Progress: Traditional and Adaptive Assessment in Undergraduate Medical Education. Innovative Research Thoughts, 2023, 9(4), 216-223. https://doi.org/10.36676/irt.2023-v9i4-029
132. Saxena, R., & Carnevale, K. Navigating Excellence: Curriculum Mapping and Student- Centric Learning in Undergraduate Medical Education. Universal Research Reports, 2023, 10(3), 124-132.
https://doi.org/10.36676/urr.2023-v10i3-016
133. Saxena R, Saxena A, Saxena R R, Marcelle T. (2016) Cutting-Edge Strategies in Massive Transfusion in Patients of Obstetric Hemorrhage. J Gen Pract (Los Angel).2016; 4:280. doi:10.4172/2329-9126.1000280
134. Saxena, R., Yakyomovych, O. (2023). Gut Microbiome, a Link between Nutrition, Physiology, and Pathology: Insights into Current Status and Future Directions - ProQuest. International Journal of Collaborative Research on Internal Medicine & Public Health; Sarajevo Vol. 15, Iss. 3, (2023), 15(3), 001–005.
https://doi.org/10.35248/1840- 4529.23.15(3).1-4
135. Saxena. R. R., Saxena, S. A., & Saxena, S. R. (2017). Vulnerability to a Bioterrorism Attack and the Potential of Directed Evolution as a Countermeasure. Electronic Journal of Biology, 13(2), 125–130.
a. Information retrieved from the Internet.
Published
2023-11-28
How to Cite
Saxena, R. R., & Saxena, R. (2023). POTENTIAL OF MEDIUM TO LONG-TERM FASTING TO TRIGGER AN AUTOIMMUNE RESPONSE THROUGH HYPERAGGRESSIVE AUTOPHAGY. IJRDO - JOURNAL OF BIOLOGICAL SCIENCE, 9(1), 1-11. https://doi.org/10.53555/bs.v1i1.5937