

Constituents and Biological Activity of Sudanese Tephrosia apollina (Fabaceae) Seed Oil

Abdel Karim, M.^{1(*)} El-Faiz, F.¹ and Mohamed Alaa

1-Sudan University of Science and Technology, Faculty of Science 2-University of Bahri,College of Applied and Industrial Chemistry

Abstract

Tephrosia is a genus in the family Fabaceae. This genus is distributed in tropical and sub-tropical regions. Tephrosia genus manifested a range of biological activities including: antifungal, antiplasmodial, antiinflammatory, antiulcer , antidiabetic and anticancer activities. In this study GC-MS analysis of Tephrosia apollina oil revealed the presence of the following major constituents: i)9octadecenoic acid methyl ester(31.79%); (ii)9,12-octadecadienoic acid methyl ester(21.34%). ;(iii) hexadecanoic acid methyl ester(17.86%) and (iv)methyl stearate(16.07%). The oil was evaluated for antimicrobial potential. The studied oil showed significant activity against Bacillus subtilis, Staphylococcus aureus coli Escherichia .It exhibited and moderate activity against other test organisms.

Keywords: *Tephrosia apollina*, Oil, GC-MS Analysis, Antimicrobial Activity.

Introduction

Since antiquity ,herbal remedy has been used by humans to fight various diseases.Most modern medicines are associated with undesirable effects and unpredictable pharmacological actions. Thus the need for new drugs with adverse less effects is global а concern^{1,2}.Medicinal plants are " the sleeping giant of pharmaceutical industries " and could ,undoubtedly, provide leads for drug development and drug discovery, and Tephrosia species are no exception.

Tephrosia is a genus in the family Fabaceae. This genus is distributed in tropical and sub-tropical regions³. Tephrosia genus manifested a range of biological activities including: antifungal, antiplasmodial, antiinflammatory, antiulcer, antidiabetic and anticancer activities. This genus is also used for wounds and diarrhea⁴. Many biologically active molecules have been reported from various species of this genus flavonoids⁵⁻¹¹; including terpenes steroids4,11-13 sesquiterpenes and retenoids¹⁴.

The hepatoprotective properties ofTephrosia purpureahasbeendocumented 15,16 . Theinvivo

antiinflammatory activity of Tephrosia reported¹⁷. The *purpurea* has been hypoglycemic effect **Tephrosia** of calophylla has been studied in animal models¹⁸.The larvicidal activity of *Tephrosia* egregia has been demonstrated¹⁹.The antimicrobial potential of Tephrosia purpurea has been reported^{7,20}.This plant also showed anticancer activity 21 .

Materials and Methods

Plant material

Tephrosia apollina seeds were collected from a forest reserve around Damazin-Sudan .The plant was identified and authenticated by the Medicinal and Aromatic Plants Research Institute.

Instruments

For GC-MS analysis a Shimadzo GC-MS-QP2010 Ultra instrument with a RTX-5MS column (30m,length ; 0.25mm diameter ; 0.25 μ m, thickness) was used .

Methods

Extraction of oil

Powdered seeds of *Tephrosia apollina* (300g) were macerated with n-hexane for 72hr.The solvent was removed under reduced pressure giving the oil.

GC-MS analysis

Tephrosia apollina seed oil was analyzed by GC-MS using a Shimadzo GC-MS-QP2010 Ultra instrument under the following chromatographic conditions:

Table 1: Chromatographic conditions

Column oven temperature	15.0oC
Injection temperature	300.0oC
Injection mode	Split
Flow control mode	Linear velocity
Total flow	50.0ml/min.
Column flow	1.54ml/sec.
Linear velocity	47.2cm/sec.
Purge flow	3.0ml.min.
Split ratio	-1.0

Antimicrobial assay

Microbial strains

The antimicrobial activity was screened using two G+ve strains: *Staphylococcus aureus*, *Bacillus subtilis;* two G-ve stains : *Escherichia coli*, *Pseudomonas aeruginosa* and the fungal species : *Candida albicans*.

Inoculum preparation

For bacteria, each of the bacterial strain was cultured in Mueller Hinton agar slants at 35°C . Fungal strain was cultured in Sabouraud dextrose agar at 37°C .The microbial growth was harvested using sterile saline solution(5ml) and diluted to a viable cell count of 10⁷CFU/ml.

Antibacterial activity

The disc diffusion assay was used to screen the antibacterial activity. As basal

layer, ten ml of Mueller Hinton agar was poured into sterile Petri dishes followed by 15 ml of seeded medium previously inoculated with bacterial suspension. Sterile filter paper discs(6mm) loaded with the test oil(100mg/ml) were placed onto the top of the Mueller Hinton agar plates.The plates were incubated at 35°C for 24h. After incubation inhibition zones were measured as indicator of antibacterial activity.

For antifungal activity, the same procedure was adopted but instead of Mueller Hinton agar Sabouraud dextrose agar was used and incubation continued here for 72h at 37°C.

Results and Discussion

Constituents of the oil

The oil was analyzed by GC-MS. The analysis showed 22 components. Fatty acids constituted 97.96%, the rest is 8sitosterol (2.04%). The oil was dominated by (i)9-octadecenoic acid methyl : ester(31.79%); 9,12-octadecadienoic acid methyl ester(21.34%); hexadecanoic acid methyl ester(17.86%) and methyl stearate(16.07%). The total ions chromatogram is shown in Fig. 1, while the constituents of the oil are displayed in Table 1.

Fig.1 : Total ions chromatograms

(i)9-octadecenoic acid methyl ester(31.79%)

The mass spectrum of 9-octadecenoic acid methyl ester is shown in Fig. 2.The peak at m/z 296, which appeared at R.T. 17.460, in total ion chromatogram, corresponds to $M^+[C_{19}H_{36}O_2]^+$.The peak at m/z265 corresponds to loss of a methoxyl function.

(ii)9,12-octadecadienoic acid methyl ester(21.34%)

Fig. 3 shows the mass spectrum of 9,12octadecadienoic acid methyl ester .The signal at m/z 294, which appeared at R.T. 17.370 corresponds : $M^+[C_{19}H_{34}O_2]^+$.The peak at m/z263 is due to loss of a methoxyl.

(iii) hexadecanoic acid methyl ester(17.86%)

The mass spectrum of hexadecanoic acid methyl ester is shown in Fig. 4. The peak at m/z 270 (R.T. 15.681) accounts for the

molecular ion: $M^+[C_{17}H_{34}O_2]^+$. The signal at m/z239 is attributed to loss of a methoxyl.

(iv)methyl stearate(16.07%)

Fig. 5 illustrates the mass spectrum of methyl stearate .The signal at m/z 298,

which appeared at R.T. 15.783 corresponds : $M^+[C_{19}H_{38}O_2]^+$. The peak at m/z267 is due to loss of a methoxyl function.

Fig. 2: Mass spectrum of 9-octadecenoic acid methyl ester

Fig. 3: Mass spectrum of 9,12-octadecadienoic acid methyl ester

Fig. 4: Mass spectrum of hexadecanoic methyl ester

Fig. 5:Mass spectrum of methyl stearate

ID#	Name	Ret.Time	Area%
1	Methvl tetradecanoate	13.531	0.13
2.	cis-5-Dodecenoic acid, methyl ester	14.341	0.03
٤.	Pentadecanoic acid, methyl ester	14.606	0.09
4	7-Hexadecenoic acid. methyl ester. (Z)-	15.397	0.11
٥.	9-Hexadecenoic acid, methyl ester, (Z)-	15.440	0.45
6.	Hexadecanoic acid, methy lester	15.681	17.86
7.	cis-10-Heptadecenoic acid, methyl ester	16.404	0.27
8.	Heptadecanoic acid, methyl ester	16.613	1.21
9.	9,12-Octadecadienoic acid (Z,Z)-, methyl ester	17.370	21.34
10.	9-Octadecenoic acid (Z)-, methyl ester	17.460	31.79
11.	Methyl stearate	17.615	16.07
12.	cis-11,14-Eicosadienoic acid, methyl ester	18.155	0.14
13.	cis-10-Nonadecenoic acid, methyl ester	18.226	0.60
14.	Nonadecanoic acid, methyl ester	18.445	0.39
15.	Cyclopropaneoctanoic acid, 2-[[2-[(2-	18.907	0.92
	ethylcyclopropyl)methyl]cyclopropyl]methyl]-,		
	methyl ester		
16.	cis-11-Eicosenoic acid, methyl ester	19.104	1.46
17.	Eicosanoic acid, methyl ester	19.307	3.42
18.	Heneicosanoic acid, methyl ester	20.129	0.07
19.	Docosanoic acid, methyl ester	20.921	0.75
20.	Tricosanoic acid, methyl ester	21.687	0.10
21.	.gammaSitosterol	21.872	2.04
22.	Tetracosanoic acid, methylester	22.426	0.76

Table 1: Constituents of the oil

Antimicrobial assay

Tephrosia apollina oil was evaluated for antimicrobial activity against standard microorganisms using disc diffusion method. The average of the diameters of the growth inhibition zones are presented in Table (2).Results were interpreted in conventional terms: (<9mm: inative;9-12mm:partially active;13-18mm: active; >18mm:very active) . Ampicilin , gentamicin and clotrimazole were used as positive controls. The studied oil showed significant activity against Bacillus subtilis , Staphylococcus aureus and Escherichia coli .It exhibited moderate activity against other test organisms.

 Table 2 : Inhibitory effect of *Beta vulgaris* oil

Sample	S	B	E	P	C
	a	s	c	s	a
Oil(100mg/ml)	2	2	2	1	1
	3	2	1	5	5
Ampicilin(40mg/ml)	3 0	1 5			
Gentamicin(40mg/	1	2	2	2	
ml)	9	5	2	1	
Clotrimazole(30mg/ ml)					3 8

Sa.: Staphylococcus aureus

Ec.: Escherichia coli

Pa.: Pseudomonas aeruginosa

Bs.: Bacillus subtilis

Ca.: Candida albicans

References

1-Muazu J., Kaita A.H., A review of traditional plants used in the treatment of epilepsy amongst the Hausa/Fulani tribes of northern Nigeria, *Afr J Tradit Complement Altern Med*, 2008; 5(4):387– 90

2-Roger J.P., Brian S.M., Anti-epileptic drug. In: Katzung BG (ed.). Basic and

clinical pharmacology. Prentice, Hall International (UK) Ltd, London, UK, pp 331–42, 1996.

3-Al-Ghamdi F.A., Morphological Diversity of Some Tephrosia Species (Fabaceae) in Saudi Arabia, *Am J Plant Sci*, 2013; 4(3):543–48

4-Chen Y., Yan T., Gao C., Cao W., Huang R., Natural products from the genus Tephrosia, *Molecules*, 2014; 19(2):1432– 58.

5-Atilaw Y., Duffy S., Heydenreich M., Muiva-Mutisya L., Avery V.M., Erdelyi M., Yenesew A., Three Chalconoids and a Pterocarpene from the Roots of Tephrosia aequilata, *Molecules*, 2017; 22(2):E318.

6-Ahmed Hassan L.E., Khadeer Ahamed M.B., Abdul Majid A.S., Iqbal M.A., Al Suede F.S., Haque R.A., Ismail Z., Ein O.C., Majid A.M., Crystal structure elucidation and anti-cancer studies of (-)-pseudosemiglabrin: a flavanone isolated from the aerial parts of Tephrosia apollinea. *PLoS One*, 2014; 9(3):e90806

7-Touqeer S., Saeed M.A., Ajaib M., A review on the phytochemistry and pharmacology of genus Tephrosia, *Phytopharmacology*, 2013; 4(3):598–637.

8- Ingham J.L., Markham K.R., Tephrocarpin, a pterocarpan phytoalexin from Tephrosia bidwilli and a structure

proposal for acanthocarpan, *Phytochemistry*, 1980; 21(12):2969–72.

9-Babayemi J., Bamikole M.. Supplementary value of Tephrosia bracteolata, Tephrosia candida, Leucaena leucocephala and Gliricidia sepium hay for West African dwarf goats kept on range, *J Cent Eur Agric*, 2006; 7(2):323–8.

10- Ganapaty S., Lakshminarayana K., Lakshmi P., Thomas P.S., Antiprotozoal and cytotoxicity assays of the isolates of Tephrosia tinctoria, *Asian J Chem*, 2009; 21(2):1007–10.

11- Hegazy M.E., El-Hamad H., Mohamed A., El-Halawany A.M., Djemgou P.C., Shahat A.A., Pare P.W., Estrogenic activity of chemical constituents from Tephrosia candida, *J Nat Prod*, 2011; 74(5):937–42.

12-Gomez-Garibay F., Calderón J.S.,
Quijano L., Domínguez M., Ríos T.,
Viridiflorin, an isoflavone from Tephrosia
viridiflora, *Phytochemistry*, 1985;
24(5):1126–8.

13-Stevenson P.C., Kite G.C., Lewis G.P., Forest F., Nyirenda S.P., Belmain S.R., Sileshi G.W., Veitch N.C., Distinct chemotypes of Tephrosia vogelii and implications for their use in pest control and soil enrichment, *Phytochemistry*, 2012; 78:135–46. 14-Chen Y., Yan T., Gao C., Cao W., Huang R., Natural products from the genus Tephrosia, *Molecules*, 2014; 19(2):1432– 58.

15-Gora R.H., Baxla S.L., Kerketta P., Patnaik S., Roy B.K., Hepatoprotective activity of Tephrosia purpurea against arsenic induced toxicity in rats, *Indian J Pharmacol*, 2014; 46(2):197–200.

16-Verma N., Neeraj Singh J., Evaluation of hepatoprotective activity of Tephrosia purpurea Linn. stem, *IEJSR*J, 2017; 2(7):1–6

17-Praveena R., Amarnath S., Jegadeesan M., Anti-inflammatory activity of Tephrosia purpurea. Root, *IJPPR*, 2011; 3(4):93–4.

18-Ramesh C., Rani P.A., *In vivo* and *in vitro* evaluation of *Tephrosia calophylla* for anti-diabetic properties , *Int J Pham Pharm Sci*, 2018; 10(6):138–4419

19- Arriaga A.M., Malcher G.T., Lima J.Q, Magalhaes F.E., Gomes T.M., Da Conceicao M., Oliveira F., Andrade-Neto M., Mafezolli J., Santiago G.M., Composition and larvicidal activity of the essential oil from *Tephrosia cinerea* Pers, *JEOR*, 2008; 20(5):450–1.

20- Luo Z.P., Lin H.Y., Ding W.B., He H.L., Li Y.Z., Phylogenetic diversity and anti-fungal activity of endophytic fungi

associated with Tephrosia purpurea, *Mycobiology*, 2015; 43(4):435–43.

21- Gulecha V., Sivakuma T., Anti-cancer activity of *Tephrosia purpurea* and *Ficus religiosa* using MCF 7 cell lines, *Asian Pac J Trop Med*, 2011; 4(7):526–9