

PARTIAL BUDGETING ANALYSIS OF THE SEVENTY-FIVE PERCENT REDUCTION IN ACARICIDE USE AND ADOPTION OF INFECTION AND TREATMENT METHOD ON PASTORALISTS' CATTLE IN NAROK COUNTY, KENYA.

Mukholi Gabriel Tenesi*

*Department of Agricultural resource economics and management, Kisii University, Kenya.

*Corresponding Author:

Email: gabrieltenesi@gmail.com, gabrieltenesi@kisiiuniversity.ac.ke

Abstract

A 3-month prospective cross sectional and simulation study was carried out to determine partial budgeting analysis of infection and treatment method (ITM) using the Muguga cocktail vaccine with seventy-five percent in reduction in acaricide use on pastoralists cattle in Narok County, Kenya. The study was carried out in Osupuko and Loita subcounties in Narok County. Partial budgeting analysis recorded positive net returns an indication of profitability of the ITM technology with seventy-five percent reduction in acaricide use. The ITM with seventy-five reductions in acaricide use realized a net return of Ksh.906.4 per immunized animal. This was significant because the information was generalized to the expansive Narok County. Thus, it can be concluded from the study that it is economically worthwhile to immunize cattle against ECF with seventy five reduction in acaricide use in the Narok County.

Keywords: Infection and Treatment method, Partial budgeting analysis

INTRODUCTION

Partial budgeting analysis refers to the financial or economic analysis of only those parts of a production system that would be affected by the decision to be made (Sloan and Arnold, 1970). It is thus, a decision-making tool, assisting in arranging information in such a way that the economic implications are clear. It is time saving since analyzing only the relevant parts of the production system will take less time than analyzing the whole production system with and without the implementation of the decision. The basic framework for partial analysis is: (Brown, 1978; Putt et al 1983).

Table 1: The basic framework for partial budget analysis

Costs	Benefits						
a) Extra costs	c) Costs saved						
b) Revenue loss	d) Extra revenue						

Partial analysis can be undertaken for one year, or for a period of several years. If the analysis only covers one year, benefits and costs can be compared as shown:

Table 2: The partial budget analysis computation for one year

a + b = Total costs and $c + d = Total benefits$
Net benefit = Total Benefits - Total Costs = $(c + d) - (a + b)$
Benefit-Cost ratio = Total Benefit / Total Costs = $(c + d) / (a + b)$

When looking at several years the costs and the benefits should be quantified separately for each year, using the basic partial analysis framework. However, they cannot simply be added up as shown immediately above. The comparison of costs and benefits should then be done according to the rules of discounting (Gittinger, 1973).

The four categories of benefits or costs provide a checklist for ensuring that all areas of cost and benefit resulting from the decision under consideration have been covered. If the decision is whether or not to implement a given livestock project, then the four components of the basic framework are some of the items that might be identified. It should be noted that all four categories will not always be needed. Many projects will not involve any revenue lost or cost saved. All projects will involve extra revenue (hopefully, unless the project is a failure) and extra costs (**Brown**, 1978; **Gittinger**, 1973; **World Bank**, 1981b)

Extra costs

Extra costs consist of the basic costs of the livestock project. These could involve pasture improvement, housing improvement, extension inputs, nutritional supplements, disease control inputs such as veterinary interventions, drugs, disinfectants, fees for vaccinations and dipping (Brown, 1978; Gittinger, 1973; World Bank, 1981b). They also include extra time invested by the producer in implementing the project, although this may be difficult to value. Where livestock numbers increase as a result of the project, extra costs will also include the extra cost of maintaining the animals.

Revenue lost

Revenue lost refers to revenue lost as a result of the type of project implemented. For many projects, there may not be any items to fill in revenue lost. Animal disease control provides some examples: a reduction in emergency slaughtering due to a reduction in mortality rates, or a reduction in the value of the herd due to slaughtering of diseased stock (Brown, 1978; Gittinger, 1973; World Bank, 1981b).

Costs saved

Projects do not always involve cost savings, but these do occur where the project makes it possible to produce livestock products at a lower cost. Again, livestock disease control provides a useful example. Where a disease has been present in the livestock population, a comprehensive control programme should lead to a reduction in the incidence or severity of the disease. This should lead to a saving in the costs of measures previously used to deal with the disease, especially in treatment costs and in time spent caring for the sick animals (Brown, 1978; Gittinger, 1973; World Bank, 1981b).

Extra revenue

Extra revenue is usually the ultimate goal of a livestock project. In order to estimate it correctly, it is necessary to go through all the items included in the output calculation. Often, it is calculated as: (Brown, 1978; Gittinger, 1973; World Bank, 1981b).

Extra revenue = output with the project minus output without the project

This works very well, but in this case, any revenue lost will usually be automatically accounted for in the above calculation and should not be estimated separately. For example, if there is a reduction in mortality due to disease control, the extra revenue or difference between output with disease control and output without disease control will reflect: a reduction in home consumption of animals due to emergency slaughter; an increase in the final herd value due

to presence of these animals. Estimating the reduction in home consumption again separately under the heading revenue lost would thus not be correct in this case (Brown, 1973; Gittinger, 1973; World Bank, 1981b).

Financial viability studies

The aspect of ITM financial viability using the cost/financial analysis of ITM can be observed from studies carried out by different scholars as outlined below. **Mbogo et al (1994)** carried out a study in Limuru and Kikuyu sub-counties of Kiambu County to assess morbidity and mortality amongst immunized and non-immunized calves. Twenty-three calves were immunized and compared to 24 controls over a 7- month period. Results obtained from the study showed that the annual mortality risk in immunized calves was 45% compared to 84% in the non-immunized group. The annual incidence rate for ECF amongst immunized calves was 9.1% compared to 61.7% amongst the non-immunized. However, the differences in the incidence rates were at p=0.21 at 5% significance level.

Muraguri et al (1998) carried out a cost analysis of immunization against ECF on smallholder dairy farms in central Kenya. Data from an immunization trial carried out on 102 calves and yearlings on 64 farms in Githunguri Sub-county of Kiambu County was used in the analysis. A reference base scenario of a mean herd size of five animals, a 10% rate of 15 reaction to the immunization and a 2-day interval monitoring regimen (a total of 10 farm visits) was simulated. Under these conditions, they showed that the mean cost of immunization per animal was US\$ 16.48 (Ksh.955.78 at the 1998 exchange rate); this was equivalent to US\$82.39 (Ksh. 4,778.90) per five-animal farm. They noted that under the commonly reported reactor rate of 3%, the cost per animal would decrease to US\$14.63 (Ksh.848.29). Reducing the number of farm monitoring visits from 10 to 7 would further reduce the total cost by 10%, justified if farmers were trained to undertake some of the monitoring work. The fixed costs were 53% of the total cost of immunization per farm. They further noted that the cost of immunization decreased with increasing number of animals per farm, showing economies of scale.

Mukhebi et al (1992) estimated that the benefit-cost ratio of immunization against ECF was in the range of 9-17, thus indicating a high level of economic returns. Data obtained from a trial site in Kitale showed that tick control by means of acaricide application could be reduced by 83% (from weekly dipping to only nine times a year) without increasing the risk of cattle to contract ECF under mixed crop-livestock production systems typical of Kitale (Kiara et al 2000). Observations by Wesonga et al (1998) and Rumberia et al (1998) during trial studies in Nakuru and Trans-Nzoia counties showed that dipping interval could be relaxed from once weekly to once every three weeks following ECFiM without exposing animals to increased risks of contracting ECF or other tick-borne diseases. A similar study by the Tick-borne Diseases Division (TBD) at Muguga on 30 farms in Limuru and Kikuyu sub-counties of Kiambu County showed that the mean acaricide application frequency reduced from 3.03 times a month to twice a month thus representing a 34% reduction in a acaricide use or a 34% reduction in cost of tick control as no other TBDs were reported during the study period (Mbogo et al 1996). The age at which calves were treated against ticks rose from a mean of 2.5 months to 3 months, thus representing a 20% increase. While this had the potential of increasing the incidence of ECF, it was, however, advantageous because it created a chance for immunity against other TBDs such as babesiosis and heartwater to develop. Tenesi et al 2023 did a study on partial budgeting analysis of Muguga cocktail vaccine in Narok County and the net returns were positive. However, no financial viability assessment study on ITM with current tick control method has been carried out in pastoral systems.

MATERIALS AND METHODS

Study design

The cross sectional and simulation study of pastoralists'herds which participated in Muguga cocktail stabilate (Infection and treatment method) against ECF in cattle with the seventy-five reduction in acaricide use was carried out in the months of October, November and December 2004. The study covered the four trial farms and other thirty (36) pastoralists'farms who had benefited from commercial vaccination launched by the Veterinarie Sans frontier German (VSF-German) in October, 2002. The herd data were collected from the respondents of the forty pastoralists'herds. Narok County data were collected from the Narok County Veterinary and Livestock production officers. The other data were collected from the existing reports.

Partial budget analysis

Partial farm budget analysis was used to estimate the profitability level of herd immunization against ECF by the infection and treatment method (ITM) with seventy-five percent reduction in acaricide use in Narok County. Partial budgeting provides a simple economic description and comparison of different disease control measures (**Dijkhuizen et al 1995**) and **Tenesi et al 2023**. The partial budget framework and the components and parameters used are as shown in Tables 3 and 4 respectively.

Table 3: Partial farm budget framework.

- 1. Additional returns
- 2. Costs no longer incurred
- 3. Subtotal: 1+2
- 4. Foregone returns 5. Additional costs 6. Subtotal: 4+5
- 7. Difference: 3 6: Derived net return. If net return is negative, then the procedure is not recommended and vice versa.

Table 4: Parameters and components of Partial budget analysis in Infection and Treatment method with seventy five percent reduction in acaricide use in Narok County.

Parameters	Components considered
Additional returns	1.Beef offtake revenue
	2.Lost beef revenue
	3. Lost milk revenue
	4.Lost revenue from surviving
Additional costs incurred	1.Immunization cost
Costs No longer incurred	Mortality costs reduced.
Foregone returns	1.Hides revenue

DATA MANAGEMENT AND ANALYSIS

The partial budget analysis was computed based on the partial budget framework (Table 3)

and parameters and components of partial budget analysis in infection and treatment method with seventy-five percent reduction in acaricide use in Narok County (**Table 4**).

RESULTS

Partial budget analysis of infection and treatment method with seventy five reduction in acaricide use

Partial farm budget analysis was used to estimate the profitability level of herd immunization against ECF by the infection and treatment method (ITM) with the seventy-five percent reduction in acaricide use in the Narok County.

Animal health economic spreadsheet

The Narok county Zebu cattle population in 2004 was 488,424 and 76% of this Zebu population was at the risk of contracting ECF.

The herd level parameters are as shown in **Table 5.** They were collected from the cross sectional data, longitudinal data and secondary reports.

The production and money values are as shown in **Table 6**. They were collected from the cross sectional data, longitudinal data and secondary reports.

The current tick control method is as shown in **Table 7.** The information in this table is collated from **Table 5** and **Table 6.** The current tick control practice is one where cattle are spayed weekly for fifty-two weeks annually.

The seventy-five percent reduction in acaricide use and adoption of Infection and treatment method (ITM) is as shown in **Table 8**. The data in this **Table 8** is compared with the data in **Table 7** for computing partial budgeting analysis.

The net return of ITM with seventy-five percent reductions in acaricide use is as shown in **Table 9.** This is the table that produces the four components of partial budgeting analysis. (Additional returns + Costs no longer incurred) – (Additional costs incurred + Foregone returns) = Net return.

 Table 5: Herd level parameters of the pastoralists herds in 2004, Narok, Kenya.

Item				·
	proportion	ECF incidence	ECF case fatality	Source Calving rate
Calves female	7.75%	36.3%	34.2%	Study data
Calves male	3.66%	36.3%	34.2%	Study data
Weaners female	19.86%	16.1%	16.1%	Study data
Weaners male	21.83%	16.1%	16.1%	Study data
Breeding female	44.14%	3.9%	3.9%	Study data 43.1%
Breeding male	2.76%	3.9%	3.9%	Study data
Non- theileriosis for calves	-	-	10%	Study data
Non-theileriosis forweaners	-	-	6%	Study data
Non theileriosis for adults	-	-	6%	Study data

Table 6: Production and money factors for the pastoralists herds in Narok County-Kenya, 2004.

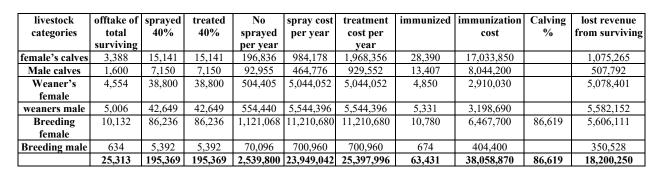
Parameter	Value	Source
Milk yield per year	130 kg per cow	Study data
Beef yield per year	60 kg per animal	Study data
Milk loss in surviving affected cows	25%	Mukhebi etal 1992a
Beef loss in surviving affected calves	5%	Mukhebi etal 1992a
Beef loss in surviving affected weaners	10%	Mukhebi etal 1992a
Calf offtake	10%	Study data
Weaners offtake	5%	Study data
Adults offtake	5%	Study data
Beef price per kg	Kshs 140	Study data
Milk price per litre	Kshs 25	Study data
Hides price for calves	Kshs 200	Study data

Hides price for weaners	Kshs 400	Study data
Hides price for adults	Kshs 700	Study data
Treatments costs per treatment	Kshs 650	Study data
Spraying costs for calves	Kshs 5	Study data
Spraying costs for adults	Kshs 10	Study data
Immunization cost per animal	Kshs 600	•

Immunization of cattle against East Coast fever with the seventy-five percent reduction generated a net output of Kshs 336,478,926 which translated into a mean marginal return of Ksh.906.4 per vaccinated cattle (**Table 9**).

Table 7: current tick control method

Livestock categories	total	incidence of ECF	fatality cases	Healthy surviving	surviving from ECF	Total surviving	non ECF mortality	Total Mortality	Mortality cost	offtake of total surviving
female's calves	37,853	13,741	4,699	20,327	9,041	29,368	3,785	8,485	71,270,628	2,937
Male calves	17,876	6,489	2,219	9,599	4,270	13,869	1,788	4,007	33,657,405	1,387
Weaner's female	97,001	15,617	2,514	75,564	13,103	88,667	5,820	8,334	140,018,305	4,433
weaners male	106,623	17,166	2,764	83,059	14,403	97,462	6,397	9,161	153,907,400	4,873
Breeding female	215,590	8,408	328	194,247	8,080	202,327	12,935	13,263	445,647,296	10,116
Breeding male	13,480	526	21	12,145	505	12,651	809	829	27,864,583	633
	488,423	61,947	12,545	394,942	49,402	444,343	31,535	44,080	872,365,618	24,379


livestock categories	milk output in sick surviving	lost milk revenue	Total Milk Revenue	Hides revenue from dead ECF cows	Hides revenue from dead non ECF	Total hides revenue	Beef yield offtake kg	beef offtake revenue	Beef yield unsold kg	Total Beef value
female's calves				939,860	757,060	1,696,920	176,210	24,669,457	1,762,104	246,694,572
Male calves				443,847	357,520	801,367	83,215	11,650,100	832,150	116,500,995
Weaner's female				1,005,745	2,328,024	3,333,769	531,999	74,479,925	10,639,989	1,489,598,495
weaners male				1,105,510	2,558,952	3,664,462	584,771	81,867,950	11,695,421	1,637,359,000
Breeding female	262,603	43,105,765	278,655,990	229,539	9,054,780	9,284,319	2,427,920	339,908,835	48,558,405	6,798,176,704
Breeding male				14,352	566,160	580,512	151,808	21,253,171	3,036,167	425,063,417
	262,603		278,655,990	3,738,852	15,622,496	19,361,348	3,955,925	553,829,437	76,524,237	10,713,393,182

livestock categories	sprayed 40%	treated 40%	No sprayed per year	spray cost per year	treatment cost per year	Calving %	lost revenue from surviving	milk output in healthy surviving	lost beef revenue	milk output loss in surviving
female's calves	15,141	15,141	787,342	3,936,712	9,841,780		3,797,363		71,270,628	
Male calves	7,150	7,150	371,821	1,859,104	4,647,760		1,793,297		33,657,405	
Weaner's female	38,800	38,800	2,017,621	20,176,208	25,220,260		22,012,701		140,018,305	
weaners male	42,649	42,649	2,217,758	22,177,584	27,721,980		24,196,247		153,907,400	
Breeding female	86,236	86,236	4,484,272	44,842,720	56,053,400	83,720	27,149,128	10,883,636	445,647,296	262,603
Breeding male	5,392	5,392	280,384	2,803,840	3,504,800		1,697,529		27,864,583	
	195,369	195,369	10,159,198	95,796,168	25,397,996	83,720	80,646,265	10,883,636	872,365,618	•

Table 8: 75% reduction in Acaricide use and adoption of ITM

livestock	total	incidence	fatality	Healthy	surviving	Total	non ECF	Total	Mortality
categories		of ECF	cases	surviving	from ECF	surviving	mortality	Mortality	cost
female's	37,853	2,748	188	31,320	2,560	33,880	3,785	3,973	33,375,484
calves									
Male	17,876	1,298	89	14,791	1,209	16,000	1,788	1,876	15,761,503
calves									
Weaner's	97,001	3,123	101	88,058	3,023	91,080	5,820	5,921	99,466,660
female									
weaners	106,623	3,433	111	96,792	3,323	100,115	6,397	6,508	109,333,241
male									
Breeding	215,590	1,682	13	200,973	1,668	202,641	12,935	12,949	435,070,154
female									
Breeding	13,480	105	1	12,566	104	12,670	809	810	27,203,236
male									
	488,423	12,389	502	444,499	11,888	456,387	31,535	32,036	720,210,278

livestock categories	offtake of total	sprayed 40%	treated 40%	No sprayed	spray cost per year	treatment cost per	immunized	immunization cost	Calving %	lost revenue from
	surviving			per year		year				surviving
female's	3,388	15,141	15,141	196,836	984,178	1,968,356	28,390	17,033,850		1,075,265
calves										
Male calves	1,600	7,150	7,150	92,955	464,776	929,552	13,407	8,044,200		507,792
Weaner's	4,554	38,800	38,800	504,405	5,044,052	5,044,052	4,850	2,910,030		5,078,401
female										
weaners	5,006	42,649	42,649	554,440	5,544,396	5,544,396	5,331	3,198,690		5,582,152
male										
Breeding	10,132	86,236	86,236	1,121,068	11,210,680	11,210,680	10,780	6,467,700	86,619	5,606,111
female										
Breeding	634	5,392	5,392	70,096	700,960	700,960	674	404,400		350,528
male										
	25,313	195,369	195,369	2,539,800	23,949,042	25,397,996	63,431	38,058,870	86,619	18,200,250

livestock categories	milk output in healthy	lost beef revenue	milk output loss in	milk output in sick	lost milk revenue	Total Milk Revenue	Hides revenue from dead ECF	Hides revenue from dead non	Total hides
	surviving		surviving	surviving			cows	ECF	revenue
female's		33,375,484					37,594	757,060	794,654
calves									
Male calves		15,761,503					17,754	357,520	375,274
Weaner's		99,466,660					40,230	2,328,024	2,368,254
female									
weaners		109,333,241					44,220	2,558,952	2,603,172
male									
Breeding	11,260,517	435,070,154	54,226	54,226	42,082,679	282,868,571	9,182	9,054,780	9,063,962
female									
Breeding		27,203,236					574	566,160	566,734
male									
	11,260,517	720,210,278		54,226		282,868,571	149,554	15,622,496	15,772,050

livestock categories	Beef yield offtake kg	beef offtake revenue	Beef yield unsold kg	Total Beef value
female's calves	203,278	28,458,972	2,032,784	284,589,716
Male calves	95,998	13,439,690	959,978	134,396,897
Weaner's female	546,482	76,507,507	10,929,644	1,530,150,140
weaners male	600,690	84,096,658	12,013,808	1,681,933,159
Breeding female	2,431,698	340,437,692	48,633,956	6,808,753,846
Breeding male	152,045	21,286,238	3,040,891	425,724,764
	4,030,191	564,226,757	77.611.061	10.865,548,522

Table 9: Net return of immunization against ECF with seventy-five percent reduction in acaricide use in Narok County, Kenya.

Parameter					
*Additional	returne				

Beef offtake revenue kshs (564,226,750-553,829,437) = kshs 10,397,313

Lost beef revenue kshs (872,365,618-720,210,278) = kshs 152,155,340

Lost milk revenue kshs (43,105,765 - 42,082,679) =kshs 1,023,086

Lost revenue from surviving kshs (80646265-18200250) = kshs 62,446,015

Additional costs incurred

Cost of immunization Ksh.38,058,870

Foregone returns

Hides revenue kshs (19,361,348 – 15722050) = kshs 3,639,298

Costs no longer incurred

Mortality costs kshs (872365618 - 720210278) =kshs 152,155,340

 $Net\ return = Ksh\ (10,397,313+152,155,340+1,023,086+62,446,015+152,155,340) - (38,058,870-3,639,298) = 336,478,926 + (38,058,870-3,988) = 336,478,926 + (38,058,988) = 336,478,926 + (38,058,988) = 336,478,926 + (38,058,988) = 336,478,926 + (38,058,988) = 336,478,9$

Average net return per animal = Kshs. 906.4

The ITM with seventy-five percent reduction in acaricide use realized a net return of Ksh.906.4 per immunized animal. Total net return was Kshs. 336,478,926 for about 371,202 susceptible cattle in Narok County.

^{*} Average exchange rate to US dollars was kshs.80

DISCUSSION

Partial budgeting analysis results of the study showed that ITM technology with seventy-five percent reduction in acaricide use was financially profitable. The ITM with seventy-five percent reduction in acaricide use realized a net return of Ksh.906.4 per immunized animal. This was significant generalization to the whole of Narok county because it shows a positive net return in ITM with seventy-five percent reduction in acaricide use. High net returns are indicators of high profitability of immunization (**Dijkhuizen et al 1995**). **Tenesi et al 2023** did find also a net positive return per immunized calf. Therefore, this can be concluded from the study that it was still economically worthwhile to immunize cattle against ECF with seventy-five percent reduction in acaricide use in Narok County.

CONCLUSION AND RECOMMENDATIONS

The partial costs and partial benefits showed partial net benefits when Muguga cocktail stabilate is applied with the seventy-five percent reduction in acaricide use. Comprehensive financial and economic analysis needs to be taken for financial viability assessment of the ITM and tick control strategies. The basic scientists should make use of the results of this study when mounting their experiments on tick control strategies and the ECF vaccination.

ACKNOWLEDGEMENT

First, all glory to the Almighty God to a fruitful conclusion. Secondly, the International Livestock Research Institute (ILRI), Kenya, the Kenya Agricultural Livestock Research Organization (KALRO) and the Directorate of Veterinary Services, Kenya (DVS) are acknowledged for the financial and logistical support.

REFERENCES

- [1]. Babo Martin, S., Di Guilio, G., Lynen, G., Peters, A. and Rushton, J. (2010). Assessing the impact of East Coast Fever immunization by the infection and treatment method in Tanzania pastoralist systems. *Preventive Veterinary Medicine*, 97: 175-182.
- [2]. **Brown, M. (1973).** Farm Budgets: From Farm Income Analysis to Agricultural project analysis. Baltimore: The Johns Hopkins University Press.
- [3]. **Dijkhuizen, A.A., Huir, R.B.M., Jalvingh, A.W. (1995)**. Economic analysis of animal diseases and their control. *Preventive Veterinary Medicine*, **25**: 135-149.
- [4]. Gittinger, J. Price. (1973). Economic analysis of Agricultural projects. Second edition.
- [5]. Edi series in Economic Development. The Johns Hopkins University Press. Baltimore and London.
- [6]. Kiara, H., Matere, C.N., Mulira, G., Mbogo, S.K., Muraguri, G.R., and Kariuki. (2000). Evaluation of alternative tick control Strategies in cattle following immunization against East Coast fever and the role of simulation modeling. Proceedings of the 9th Symposium of the International Society for Veterinary Epidemiology and Economics (ISVEE) August6-11 2000. Colorado, U.S.A.
- [7]. **Mbogo**, S.K., Kariuki, D.P., Ngumi, P.N. and McHardy, N.(1996). A mild *Theileria parva* strain with potential for immunization against East Coast fever. *Veterinary Parasitology*, 6: 41-47.
- [8]. **Mbogo**, S.K., Wanjohi, J.M., and Peeler, E. (1994). A comparison of immunized and non-immunized calves in Limuru/Kikuyu Division. Kenya Agricultural Research Institute. (Unpublished).
- [9]. Mukhebi, A.W., Perry, B.D., and Kruska, R. (1992a). Estimated economics of Theileriosis control in Africa. *Preventive Veterinary Medicine*, 12: 73-85.
- [10]. Muraguri, G.R., Mbogo, S.K., McHardy, N., and Kariuki, D.P. (1998). Cost analysis of immunization against East Coast fever on smallholder dairy farms in Kenya. *Preventive Veterinary Medicine*, **34**: 307-316.
- [11]. Putt, S.N.H., Shaw, A.P.M., Woods.A.J., Tyler. L., and James, A.D. (1988). Veterinary Epidemiology and economics in Africa. A manual for use in the design and appraisal of livestock health policy. ILCA Manual NO.3. Veterinary Epidemiology and Economics Research Unit, Department of Agriculture, University of Reading, Berkshire, England
- [12]. Rumberia, R.M., Wanjohi, J.M., Muraguri, G.R., Ngeranwa, J.J.N., and Mbogo, S.K. (1998). Fluctuations of Ixodid ticks on cattle in Trans-Nzoia County, north Rift Valley Province, Kenya. In NVRC Muguga 1998. Mid year scientific conference of the National veterinary Research centre, Muguga. S.W. Wanyangu, H.M. Wamwayi, D.P. Kariuki, M. Gatongi, and S.K. Mbogo (Eds). Kenya Agricultural Research Centre 1998 pgs 20-21.
- [13]. Sloan, Harods., and Arnold, Zurchar., (1970). Dictionary of Economics. 5th edition. New York: Bames and Noble.
- [14]. Tenesi.G.M; Kitala.P.M; Gathuma.J.M and Kiara.H.K. (2015). Assessment of the efficacy of infection and treatment method against east coast fever and the financial and economic benefits in Narok county of kenya. Msc thesis. University of Nairobi.
- [15]. Tenesi.G.M; Kitala.P.M; Gathuma.J.M and Kiara.H.K. (2023). Partial budgeting analysis of Muguga cocktail vaccine in Narok county of kenya. DOI no: 1024940/theijbm/2023.
- [16]. Wesonga. F.D., Ndungu, S.G., Rumberia, R.M., and Muraguri, G.R. (1998). Tick control in Rongai following immunization against East coast fever (ECF). In NVRC Muguga 1998: Mid year scientific conference of the National veterinary Research centre. Muguga. S.W. Wanyangu, H.M. Wamwayi, D.P. Kariuki, P.M. Gatongi, and S.K. Mbogo (Eds). Kenya Agricultural Research Institute, 1998.pg19.
- [17]. World Bank. (1981b). A Handbook on monitoring and evaluation of Agricultural and Rural Development projects, Washington, D.C.