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Abstract. 

Scientists, investors and policy makers have 

become aware of the importance of providing 

near accurate spatial estimates of renewable 

energies. This is why current studies show 

improvements in methodologies to provide 

more precise energy predictions. Wind energy 

is tied to weather patterns, which are irregular, 

especially in climates with erratic weather 

patterns.  This can lead to errors in the predicted 

potentials. Therefore, recurrent neural networks 

(RNN) are exploited for enhanced wind-farm power 

output prediction. A model involving a combination 

of RNN regularization methods using dropout and 

long short-term memory (LSTM) is presented. In 

this model, the regularization scheme modifies and 

adapts to the stochastic nature of wind and is 

optimised for the wind farm power output (WFPO) 

prediction. This algorithm implements a dropout 

method to suit non-deterministic wind speed by 

applying LSTM to prevent RNN from overfitting. A 

demonstration for accuracy using the proposed 

method is performed on a 14-turbines wind farm. 

The model out performs the ARIMA model with up 

to 80% accuracy. 

Keywords: Wind Power Output Prediction, 

Recurrent Neural Network, Deep learning, 

oLSTM, ARIMA, RMSE, MSE. 

 

I Introduction. 

The global energy report shows that power generation 

from wind rose to 54.6 gigawatts (GW) of installed 

capacity. China and the USA are leading with increasing 

installed capacity. Countries like Germany and India are 

showing a strong appetite for wind energy [1]. Wind 

data is stochastic; it is a very complex task to forecast 

the velocity of wind using linear approaches [2]. In 

addition, the length of the forecasting horizon has a 

correlation with the accuracy of forecasting methods. 

These horizons are ultra-short-term, short-term, 

medium and long-term. Ultra-short-term wind 

forecasting refers to wind data prediction in the range of 

a few minutes to one hour ahead [3]. Short-term 

counterparts are mainly for a period starting from one 

hour to several hours ahead, generally for unit 

commitment and operational security in the electricity 

market. Medium-term and long-term forecasting refers 

to longer time horizons [4]. Prediction of wind depends 

on several atmospheric factors, which strongly affect 

wind energy conversion. Effective operation depends on 

not only wind energy conversion but also power system 

reliability and load demand. Real power prediction from 

wind are classified into four main categories – 

persistence model, physical methods, statistical and 

artificial intelligence methods. 

In the persistent method, the future wind speed is 

equivalent to the wind speed in the forecasting time [5].  

This method is the most economical and the simplest 

wind forecasting approach. The drawback is the rapid 

degradation of the performance on an extended 

forecasting horizon. The physical approach however is 

based on numerical weather prediction (NWP) [6]. 

NWP outputs accurate estimations for long-term 

predictions. The major drawback of NWP models is the 

memory complexity and high time consumption in 

producing results; hence, it is not reliable for short 

forecasting horizons. The statistical methods find the 

mathematical relationship between wind-speed time 

series data. These models are auto regressive (AR), auto 

regressive moving average (ARMA), auto regressive 

integrated moving average (ARIMA), and Bayesian 

approaches. Reference [9] studied an approach using a 

K-nearest neighbour (KNN) regression model for short-

term wind speed forecasting. Artificial intelligence (AI) 

techniques including artificial neural networks (ANNs) 

[7, 12-16], support vector regression (SVR) [17, 18], 

and recurrent neural methods [19-21] led to novel 

methodologies for wind speed and power predictions. 

ANNs can capture the relationships between the input 

data and the predicted wind speed values; hence, they 

are used for time series prediction of different weather 

variables on various time scales and yield. Recurrent 

ANN [20, 21], radial basis function (RBF) ANN [14] 

and adaptive wavelet ANN [22] have been proposed 

recently for wind speed prediction.  

RNN-based approaches have been widely applied in the 

time series prediction. This is because RNN implicitly 

learns features in a high dimensional space applying its 

cell state capabilities. However, the drawback is that it 

suffers vanishing gradient challenges. Variants of RNN 

such as long short-term memory (LSTM) were proposed 
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[24, 25] to mitigate these problems but suffers 

overfitting especially on time series type of problems, 

hence, they require further control. Authors in [27] 

demonstrate the economic advantage of hybrid 

regularizations. In this paper, an integration involving 

fusing of regularization methods on RNN is proposed. 

This new regularization involves long short-term 

memory (LSTM) and a dropout regularisation (LSTM-

Dropout) model for learning nonlinear temporal 

features from the wind series data to control overfitting.  

The LSTM-Dropout (oLSTM) model is proposed to 

learn the decreasing energy function while increasing 

the learning pattern in the observed input vectors of the 

wind series dataset. The method effectively controls the 

vanishing gradient problem as it maps input and output 

wind data. The paper makes the following 

contributions:  

 A new recurrent network-learning model, 

oLSTM, presented based on hybrid regularization of 

long short-term memory and dropout architectures 

for the robust unsupervised feature extraction of 

wind-series. The proposed oLSTM is an energy-

based regressive method proven to capture the co-

adaptation of input variables. To the best of our 

knowledge, oLSTM is the first recurrent deep 

learning model capable of capturing interval 

knowledge from wind data.   

 The approach presented can extract 

meaningful features from the input in an 

unsupervised manner. Thus, unlike other AI 

methodologies [12-16], no prior knowledge about 

the wind data is needed for the feature extraction.  

 In contrast to previous deep learning works 

including [29] and [25], this approach involves real-

valued input units, designed for wind domain, which 

can work in any weather situation. 

 

The contributions above are sub-divided into two areas: 

a) Machine Learning: The development of an integral 

long short-term learning system and the incorporation of 

the dropout tuning regularisation model and. b) Wind 

farm Power output Prediction: The application of an 

unsupervised feature extraction model in a nonlinear 

learning fashion to predict output wind power. 

    

The rest of the paper is organised as follows; in Section 

II field data used in the research is discussed. Section III 

presents the implemented machine learning model 

configurations. The research experimentation is 

presented in section IV. However, the results evaluation 

and presentation is as discussed in section V while the 

paper conclusion is as presented in section VII.  

 

II. Field Data Description 

The  data   is extracted from the PHM society [30]. 

Feature extraction, de-noising and filtering were  as 

described by [31]. Figure 1 is an exploration of 

randomly selected data within the wind farm.  

 

 

 

 

 

 

Figure 1. Wind speed of Different Turbines. 

Visualisations at each of these Turbines, shows wind 

speed plots share similar patterns. In the research, wind 

data from fourteen turbines (although four are presented 

in the paper) is considered. These data were from wind 

turbine (WT330), wind turbine 291 (WT291), WT310 

and so on. 

Table 1: Summary Statistics of Wind farm Data. 

 

The description of Table 1 suggests either checking the 

variations statistically to ensure the merging of the 

associated data from different turbines is possible or 

using machine learning (ML) to generate individual 

predictions and merge results afterwards. However, the 

paper chose the former due to its reliability and efficient 

results.  

III. Machine Learning Model Preparation 

The paper employed these three basic steps to achieve 

data preparation prior to model fitting: 

 Transform the generated wind speed (WS) data 

to be stationary using Dickey-Fuller test by 

computing first level (d = 1) differencing using 

the difference between current series (𝛾𝑡) and 

previous series (𝛾𝑡−1) as in 𝛥𝛾𝑡 =  𝛾𝑡 −  𝛾𝑡−1.  

 Transform the data into a supervised learning 

problem to have input/output patterns such that 

 
WT8 WT93 WT208 WT310 

Count 720 720 720 720 

Mean 0.534 0.356 0.283 0.145 

Median -0.008 -0.102 0.116 -0.161 

Mode -0.496 -0.320 0.230 -0.725 

STD 1.485 1.046 0.898 1.021 

S.Variance 2.204 1.094 0.807 1.041 

Skewness 1.589 1.243 1.623 2.121 

Range 7.984 4.704 4.372 5.261 

C.Interval 1.109 0.077 0.066 0.075 

Maximum 7.259 4.704 4.372 5.261 

Time (min- 10min intervals) 
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at prior steps, observations are used as input to 

predict observation at the current time step 

 Normalise the data to have a specific scale 

between -1 and 1. 

These transforms are converted after the prediction to 

return them into their original scale before errors are 

calculated and scored. 

 

 
 
 
 
 
 
 
 
 
 
    Time (seconds) 

Figure 2: wind speed data at 10min intervals.  

 

From the differenced data within the farm, Figure 2 

implies that maximum wind speed is experienced 

between 4 A.M. to noontime leaving the afternoon time 

with low speed winds. The insight gained, led to data 

split; 80% of the data for training while the rest 20%, 

within the high wind time is set for testing the proposed 

model. The paper leveraged on the LSTM configuration 

and discussions for wind power output prediction. 

a.  LSTM Model Description. 

First, the basic structure of LSTM is as shown in Figure 

3 and the explanations of how the improvements are   

made over RNN are discussed in [25, 35, 36]. This 

Figure depicts the LSTM architecture with a single node 

cell implementation. 

The cell state Ct updates input, it and output, ot wind 

features by performing element-wise multiplication on 

the input and output gate of the cell while the previous 

state of the cell is multiplied by the forget gate ft . This 

scenario results in the control of exponential bursts that 

corrects vanishing gradients. Because time series 

requires single value prediction, the gate activation 

function  it, 𝜊𝑡 , 𝑓𝑡  𝑢𝑠𝑒𝑠 sigmoid activation for LSTM 

output blocks. However, the rest of the mathematical 

configuration is as shown in Eq. (1). 

ft = σg(ϴxfxt + ϴℎfht−1 + bf)                                                        

it =  σg(ϴ𝑥ixt + ϴℎi + bi) 

οt = σg(ϴ𝑥οxt + ϴℎοht−1 + bο) 

𝑔𝑡 = 𝑇𝑎𝑛ℎ (ϴxgxt + ϴhght−1 + bg) 

ct = ft ʘ ct−1 +  it ʘ gt 

ht =  οt ʘ Tanh (ct)                                           (1) 

                                                                                                

 

  

 

 

 

 

 

Figure 3: LSTM Architectural Design 

b. Dropout Modelling.  

This is another type of regularization method seen in 

ANN literature. However, in terms of implementation, 

authors in [37-39] applied dropout to solve various over-

fitting challenges. Other methods [40] applied the 

Bernoulli random technique 𝛿𝑖 to remove certain hidden 

neurons ί from a neural  network having 𝑃(𝛿𝑖  =  0)  =
 𝑞𝑖 assumed to be independent to each other.  𝑃 (𝛿𝑖 =
 1)  =  1 − 𝑞𝑖  =  𝑝𝑖 Linearity property ensures that 

the expectation of the output of the neuron is:  

𝐸[𝑦(𝑖)] =  ∑ 𝑤𝑘𝑥𝑘
(𝑖)

𝐸[𝑛
𝑘=1 𝛿𝑘] + 𝑏𝐸[𝛿𝑘] 

               =  ∑ 𝑤𝑘𝑥𝑘
(𝑖)

𝑝𝑘 + 𝑏𝑝𝑏
𝑛
𝑘=1                    (2) 

From ii, 𝑎𝑡 𝐼𝐼𝐷,  𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑝𝑖 = 𝑞 𝑎𝑛𝑑 𝑝𝑏 =
𝑝, result to 

𝐸[𝑦(𝑖)] =  ∑ 𝑤𝑘𝑥𝑘
(𝑖)

𝑝 + 𝑏𝑝𝑛
𝑘=1   

              = 𝑝. [∑ 𝑤𝑘𝑥𝑘
(𝑖)

𝑞 + 𝑏𝑛
𝑘=1 ]                      (3) 

 

However, Eq. (3) results in a dropout representation, 

which is simplified to 
1

1−𝑝
=

1

𝑞
   resulting in Eq. (4) 

 

𝐸[𝑦(𝑖)] =
1

𝑞
 . [∑ 𝑤𝑘𝑥𝑘

(𝑖)
𝑞 + 𝑏𝑛

𝑘=1 ]                       (4) 

 

The equation further results in the concept of dropout 

that improves the generalisation of the LSTM neural 

configuration. 

 

c. L1L2 Regularisation 

 

Another technique used in improving RNN 

performance is weight regularisation. This technique 

imposes the L1L2 constraints on weights within LSTM 

nodes to reduce overfitting. Research in [24] 

mathematically resolves the idea in Eq. (5) below,   
 

𝓛𝑇(𝑤) = 𝓛𝐷(𝑤) +  𝝀𝓛𝑤(𝑤)  

 𝓛𝐷(𝑤) =
1

2
∑[𝑦(𝑖) − ℎ(𝑥(𝑖); 𝑤)]2

𝑚

𝑖=1

 

Ct 

(ℎ𝑡−1, 𝑋𝑡) 

(ℎ
𝑡−

1
,𝑋

𝑡
) 

(ℎ𝑡−1, 𝑋𝑡) 

(ℎ𝑡−1, 𝑋𝑡) 

Input Gate 

Output Gate 

Forget Gate 

𝑖𝑡 

𝑔𝑡 

𝐶𝑡 

𝑂𝑡 

ℎ𝑡 
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𝓛𝑤(𝑤) =
1

2
𝑤𝑇𝑤                                                  (5)   

Where 𝑦(𝑖) is the target output while ℎ(𝑥(𝑖); 𝑤) is the 

network output, w is LSTM NN parameter and 

𝓛𝑇(𝑤) is a loss function associated with weight . 𝛌 is 

the regulariser that controls the trade-off 

between 𝓛𝐷(𝑤) 𝑎𝑛𝑑 𝓛𝑤(𝑤), while 𝓛𝐷(𝑤) is the sum 

square error between 𝑦(𝑖) 𝑎𝑛𝑑 ℎ(𝑥(𝑖)) 

IV. Experiments 

A. Model Training  

The method for correcting weight values [41] to handle 

over-adaptation, which causes diminishing accuracy on 

new samples while training LSTMs is applied by the p 

in Eq. (3), which is multiplied by the weight parameters 

𝑤𝑘  of the LSTM network to present a fake neuron by 

reducing co-adaptation among the neurons. This 

scenario results in an LSTM network that is insensitive 

to specific neuron weights, thereby influencing better 

generalisation with relatively less likelihood for 

overfitting training data.  

The oLSTM input wind-power pattern is framed into 

samples, time steps and features. Framing feature series 

is implemented using a window method that requires 

samples featured in current time (t) to predict the next 

time sequence (t+1) knowing prior times t-1, t-2, t-3,…, 

t-n as input variables. This is because from the literature, 

LSTM’s gating parameters decides whether to update 

current state ɱ to new candidate state Ɯ learning from 

the input sequence of the previous state.  

B. Optimisation criterion. 

While training oLSTM, error is imminent. The 

algorithm experiences errors that need to be minimised. 

The error function E(x) depends on the internal 

learnable parameters of the model [41]. These learnable 

parameters are used to compute target values (Y or 

predicted values) from a set of X or input wind 

features. The weight (𝑤𝑘) and bias (𝑏𝑘) are learnable 

parameters that are used to compute output wind values 

that are learned and updated alongside the  optimal 

solution in order words, having loss minimisation in the 

training process. During training, the paper 

implemented RMSprop as in [27]. 

C. ARIMA Configuration. 

 Machine learning (ML) models like LSTM, can be 

applied directly to the raw data [9], ARIMA (P, D, Q) 

models that are state space models requires model 

improvement due to outliers inherited from the data. 

The p d, and q parameters are modelled in [8] using the 

grid search machine learning method. 

The grid search technique is slow, it depends on the 

performance of the system processor and RAM. It is 

tuneable to RMSE statistical quantity for best 

estimation. In this paper, about 0.82% evaluated RMSE 

error were reported meaning that the search has the best 

(p, d, q) components at (0, 2, 1) respectively. 

D. Wind Power Modelling. 

The set of inputs are multiplied by a set of weights 

((𝑤𝛳𝑖) and are further processed by individual deep 

units that have 12-hidden layers with output ϴ unit as in 

Eq. (6) 

𝑦𝛳(𝑡) =  𝑃(𝑓(𝑜𝐿𝑆𝑇𝑀𝛳(𝑡)𝑎𝑛𝑑 𝐴𝑅𝐼𝑀𝐴𝑝,𝑑,𝑞)| 

{𝑤𝑠𝑡−1, 𝑤𝑠𝑡−2,𝑤𝑠𝑡−3, … }                                          (6) 

Where ws = wind speed. 

𝑜𝐿𝑆𝑇𝑀𝛳(𝑡) =  ∑ 𝑤𝛳𝑖𝑋𝑖(𝑡)𝛳
𝑖=1                               (7)                                                                           

𝐴𝑅𝐼𝑀𝐴𝑝,𝑑,𝑞 =  ∑ 𝑋𝑖(𝑡)𝛳
𝑖=1                                     (8) 

 t represents 10 min interval of wind data. The sigmoid 

function implements as non-linear output of the form 

(𝑥) =  
1

1+ 𝑒−𝑥 .                                                                                                              

Modelling multi-step 8-hours ahead as proposed in Eq. 

(7) and (8) has N as the number of hours (minutes 

converted to hours) considered in the dataset. However, 

for each wind turbine at a particular hour, the 

formulation uses the generated weight as modified in 

Eq. (9). 

𝑊𝑑
𝑛𝑜𝑑 = {Ẇ𝑠

𝑛𝑜𝑑[𝑡ℎ + 𝑚𝑖𝑛], Ẇ𝑡,𝑤,𝑡,ℎ
𝑛𝑜𝑑 [𝑡ℎ +

𝑚𝑖𝑛]) | 𝑚𝑖𝑛 = 1, 2, …., 14}                               (9)                           

 ℎ = 1,2, 3, … , 8. 𝑛𝑜𝑑 Є {𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑤𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒}, 

which is not disclosed in the research dataset. 

Ẇ𝑡,𝑤,𝑡,ℎ
𝑛𝑜𝑑  𝑎𝑛𝑑 Ẇ𝑠

𝑛𝑜𝑑 denotes turbine’s node prediction of 

wind power respectively at time 𝑡 =  𝑡ℎ + 𝑚𝑖𝑛  

V. Evaluation and Result Presentation  

The paper is evaluated by sequence generation using the 

mean squared error (MSE), which is averaged over the 

features in the training and test set. Comparing 

regularizers on RNN, the MSE on training and testing is 

as shown in Table 3. However, in Table 4 ARIMA and 

oLSTM predicted performance were compared using 

RMSE in different trials.  Sequence generation on root 

mean squared error (RMSE) and MSE criterion is given 

by Eq. (10) and (11). 

𝑒𝑀𝑆𝐸 =  
1

𝑁
√∑ (𝑋𝑡 −  Ẍ𝑡)𝑁

𝑡=1                    (10) 

𝑧𝑒𝑅𝑀𝑆𝐸 = sqrt(𝑒𝑀𝑆𝐸 )                                (11) 

IJRDO - Journal of Applied Science       ISSN: 2455-6653

Volume-5 | Issue-2 | Feb,2019 31



5 | P a g e  
 

Table 3: ARIMA, oLSTM Comparison. 

 

For a better understanding1 of each set of 

experiments, a total number of 10 samples is 

selected during training and testing with associated 

RMSE scores. 

 Table 4: Regularisation MSE results 

 

The training and testing sample is evaluated after each 

training epoch to check if the configuration2 is 

overfitting or under-fitting as in Figure 4. 

 

 

 

 

 

 

 

Figure 4: LSTM Overfitting Test 

 

From the figure above, the model experienced closeness 

in the training sample, inferring overfitting. Overfitting 

is addressed by oLSTM as shown by the bumps 

observed in Figure 5. The boxplot of Figure 6 compared 

the distribution of results for each configuration.  

 

 

 

                                                            
 1 The dropout was set at 20% and L1L2 is of same 

sample set 
2 . Traditional LSTM with no regularisation 
3
LSTM/dropout and LSTM models are obtained  

with – learning rate: 2 × 10−3, learning rate decay:  

0.98, decay rate: 0.96, without dropout;  

 

 

 
 

 

 

 

 

 

Figure 5: Overfitting Control. 

 

Furthermore, LSTM experienced fast training with the 

type of regularizer used, while the rest – dropout and 

L1L2 appears to have good results with more hyper-

parameter selection3.  

 

 

  

 

     

                                                                                            

 

 

Figure 6: Regularisation Comparison. 

 

Hence, looking at Figure 6, we infer that because the 

oLSTM has the least minimum median values, its 

generalisation shows a better model. Therefore, the 

model is used to derive Figure 7 and figure 8 that shows 

individual oLSTM and ARIMA models. 

 

 

 

 

 

 

Figure 7: ARIMA wind power prediction. 

 

With the same setting, adding dropout to  

LSTM model has an adverse effect on its validation loss, 

similarly, when increasing the number of LSTM layers to 3.  

The number of layers are 2 for both RNN models, trained with a 

batch size of 10. 

 
RMSE-ARIMA  RMSE oLSTM 

@ 20%  0.7617 0.5283 

@30% 0.8315 0.5052 

Trials oLSTM 

MSE (%) 

L1L2 and 

LSTM MSE 

(%) 

LSTM 

MSE (%) 

Exp. 2 0.6240 0.6890 0.7102 

Exp. 4 0.6731 0.6901 0.7806 

Exp. 6 0.6224 0.6900 0.7412 

Exp. 8 0.6105 0.7001 0.7510 

Exp. 10 0.6001 0.7040 0.7306 

LSTM oLSTM (20%) L1L2 oLSTM (50%) 
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Figure 8: oLSTM wind-power prediction. 

However, due to the performance of the dropout on 

LSTM, we compared the result with other machine 

learning algorithms – ARIMA of Figure 9 and 10. 

 
Figure 9: Model Comparison. 

Figure 10: Model Predictiion4   

VI Conclusion 

Wind speed prediction remains the most essential 

system variable for wind power predictions. Effective 

power system operation – load demand and penetration 

relies on accurate wind prediction. Important tools that 

improves efficiency and power system reliability 

depends on effective prediction of wind speed and 

power. This research paper has reviewed different 

techniques applied to wind speed and power. 

Techniques seen in wind speed forecasting differ from 

location to location, which in turn depends on the time 

of prediction. Several methods of prediction, 

application and metrics of performance used in studying 

different wind farms have been studied, especially the 

drawbacks of RNN, overfitting in Figure 5 and 6.  Multi-

step prediction, equivalent to short-term, eight-hour 

                                                            
4 For ease of clarity, the figure was presented 

Reducing the test on 20 test samples 

ahead wind-farm power output prediction using a new 

regularization method is carried out as depicted in 

Figure 7 and 8. In addition, wind speed prediction is 

considered for network training. The new strategy is 

used in selecting training samples for prediction of wind 

power based on wind speed.  
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