

A LINEAR RELATION BETWEEN CURVATURES AND FUNDAMENTAL FORMS

Serpil KARAGÖZ,

Department of Mathematics, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, 14030, Bolu, Turkey,

September 21, 2021

Abstract

In this work, a linear relation between high order fundamental forms and curvatures was obtained by using Cayley-Hamilton theorem.

1 INTRODUCTION

Definition 1.1 Let M be a hypersurface of E^n and N be a unit normal field of M. Then the mapping S on M defined by

$$S(X) = D_X N$$
 for all $X \in X(M)$

is called a shape operator or Weingarten Mapping of M, where D is the Riemann connexion on E^n (Hicks, 1974, pp:21).

Definition 1.2 Let M be a hypersurface of E^n . The fundamental forms on M can now be defined in terms of S and the inner product. If X and Y are in X(M), then

$$\begin{split} I(X,Y) = &< X,Y >, \\ I^2 = II(X,Y) = &< S(X),Y >, \\ I^3 = III(X,Y) = &< S^2(X),Y >, \\ I^4 = IV(X,Y) = &< S^3(X),Y >, \end{split}$$

etc, and these forms are called the first, second, third, etc, fundamental forms on M (Hicks, 1974).

Definition 1.3 (Cayley- Hamilton Theorem) Consider the n-square matrix $\mathbf{A} = [\mathbf{a}_{ij}]$ having characteristic matrix $\mathbf{A} - \lambda \mathbf{I}$ and characteristic equation $P(\lambda) = det(\mathbf{A} - \lambda \mathbf{I}) = 0$ (Ayres, 1974).

Definition 1.4 Let M be a hypersurface in E^{n+1} and $T_M(P)$ be a tangent space on M, at $P \in M$. If S_P denotes the shape operator on M, at $P \in M$, then

 $S_P: T_M(P) \longrightarrow T_M(P)$

is a linear mapping. If we denote the characteristic vectors by $x_1, x_2, ..., x_n$ of S_P then $\lambda_1, \lambda_2, ..., \lambda_n$ are the principle curvatures and $x_1, x_2, ..., x_n$ are the principle directions of M, at $P \in M$. On the other hand, if we use the notions

$$K_1(\lambda_1, \lambda_2, ..., \lambda_n) = \sum_{i=1}^n \lambda_i$$

$$K_2(\lambda_1, \lambda_2, ..., \lambda_n) = \sum_{i < j}^n \lambda_i \lambda_j$$

$$K_3(\lambda_1, \lambda_2, ..., \lambda_n) = \sum_{i < j < k}^n \lambda_i \lambda_j \lambda_k$$

:

 $K_n(\lambda_1, \lambda_2, ..., \lambda_n) = \prod_{i=1}^n \lambda_i$

then the characteristic polynomial of S(P) becomes

$$P_{S(P)}(\lambda) = \lambda^{n} + (-1)K_{1}\lambda^{n-1} + \dots + (-1)^{n}K_{n}$$

and $K_i, 1 \leq i \leq n$ are uniquely determined, where the functions K_i are called the higher ordered Gaussian curvatures of the hypersurface M (Özdamar-Hacısalihoğlu, 1977, Kobayashi-Nomizo, 1969).

Theorem 1.1 Let M be a hypersurface of E^3 . Then the following relation holds between the first, second and third fundamental forms of M:

$$III - HII + KI = 0$$

where H and K denote the mean curvature and Gaussian curvature of M (Hacısalihağlu, 2003).

2 GENERALIZED THEOREM

Theorem 2.1 Let M be a hypersurface of E^{2n+1} . The fundamental forms $I, I^2, ..., I^{2n+1}$ on M and higher ordered Gaussian curvatures $K_1, K_2, ..., K_{2n}$ then

$$\sum_{i=0}^{2n} K_i I^{2n+1} \equiv 0$$
 and $K_0 = 1$

Proof: M be a hypersurface of E^{2n+1} , dimM = 2n, then $dimT_M(P) = 2n$. Therefore $S: T_M(P) \longrightarrow T_M(P)$ the characteristic polynomial of shape operator is 2n order. Moreover, since $K_1, K_2, ..., K_{2n}$ curvatures are zeros of this polynomial of S is

$$P_S(\lambda) = \lambda^{2n} + (-1)K_1\lambda^{2n-1} + \dots + (-1)^{2n}K_{2n}$$

According to Cayley-Hamilton theorem, S is the zero of this polinomial. Then

^ 1

$$S^{2n} + (-1)K_1S^{2n-1} + \dots + (-1)^{2n}K_{2n}I_{2n} = 0$$

$$(S^{2n} + (-1)K_1S^{2n-1} + \dots + (-1)^{2n}K_{2n}I_{2n})(X_P) = 0 \ \forall \ X_P \in T_M(P)$$

$$\left\langle (S^{2n} + (-1)K_1S^{2n-1} + \dots + (-1)^{2n}K_{2n}I_{2n})(X_P), Y_P \right\rangle = 0 \ \forall X_P \in T_M(P)$$

$$\left\langle (S^{2n}(X_P), Y_P) + (-1)K_1 \left\langle S^{2n-1}(X_P), Y_P \right\rangle + \dots + (-1)^{2n}K_{2n} \left\langle (X_P), Y_P \right\rangle = 0$$

$$I^{2n+1}(X_P, Y_P) - K_1I^{2n}(X_P, Y_P) + \dots + K_{2n}I(X_P, Y_P) = 0$$

$$I^{2n+1} - K_1 I^{2n} + \dots + K_{2n} I = 0$$

Therefore

$$\sum_{i=0}^{2n} (-1)^{2+i} K_i I^{2n+1-i} = 0, \ K_0 = 1$$

REMARK: If special case n = 1, a linear relation between fundamental form and curvatures, well-known in E^3 is obtained III - HII + KI = 0 Let M be a hypersurface of E^{2n+1} .

References

[1]. FRANK AYRES. JR.: "Schaum's outline theory and problems of matrices" McGraw-Hill International Book Company, New York(1974).

[2]. HACISALIHOĞLU, H.H.": Differential Geometry" Inönü University press, Malatya (1980-2003 Volume II).

[3]. HICKS, NOEL, J.:"Notes on Differential Geometry" Van Nostrand Reinhold Company, London (1974).

[4]. KOBAYASHI, S-NOMIZA, K.:" Foundation of Differential Geometry" John Wiley Sons.Inc. Volume II(1969).

[5]. ÖZDAMAR. E-HACISALİHOĞLU, H.H.: "Higher Order Gauss Curvature and Fundamental Forms" Journal of the K.T.Ü. Vol. 1. Fasc. 9. PP: 99-116, seri MA: Mathematics (1977).