
Constructions of Two Classes of Permutation
Polynomials

Chenfan Huang1,2, Shixiong Xia1,∗, Fengrong Zhang1,2, Yong Zhou1

1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou,
Jiangsu 221116, China. E-mail: xiasx@cumt.edu.cn, zhfl203@163.com

2. Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic
Technology, Guilin 541004, China.

Abstract. In this paper, we first investigate the constructions of permutation polynomials
of the shape G(X)⊕γTr(H(X))) over F2n . A mapping function which transforms a Boolean
function on n variables to a univariate function over F2n is provided. On basis of the mapping
function, we put forward two methods for constructing two classes of univariate functions
over F2n . Further, two classes of permutation polynomials of the shape G(X)⊕γTr(H(X)))
can be obtained using the two classes of univariate functions. At last, based on the one-to-
one correspondence between Boolean permutations and Maiorana-McFarland’s (M-M) bent
functions, we propose an algorithm to compute the algebraic normal form (ANF) of a 2k-
variable M-M bent function from its truth-table. The complexity of this algorithm is much
smaller than that of the Butterfly algorithm which is directly used to compute the ANF of
a 2k-variable M-M bent function from its truth-table.

Keywords : Boolean function, bent function, linear structure, permutation polynomial,
linearized polynomial, Trace

1 Introduction

Boolean permutations are used in various different areas and play an important role in the
security of cryptosystems. Their most prominent cryptographic applications include the
analysis and design of S-boxes in block ciphers. For example, the S-box used in the design
of the Advanced Encryption Standard (AES) is a Boolean permutation on 8 variables.
The researches on Boolean permutations are paid much attention [7–10]. Charpin and
Kyureghyan [11] studied the permutation polynomials of the shape

F (X) = G(X)⊕ γTr(H(X))) (1)

over F2n . They showed that the considered problem is related to finding Boolean functions
with linear structures (in terms of linear structures, we can see [12].) and then presented
some classes of permutation polynomials by using Boolean functions with linear struc-
tures. These were generalized in [13], where F (X) ∈ Fpn [X], p is any prime number. In
addition, Charpin and Kyureghyan [13] used the univariate variables represent to charac-
terize the functions assuming a linear structure. However, the characterization of linear
structure of a function over the finite fields becomes difficult as soon as its the expression
includes more than two terms. For some specific types of Boolean function,the study of
permutation polynomials over Fpn [4–6] has great helped. Recently, Charpin and Sarkar

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 1

[14] fully characterized the bilinear polynomial with linear structure and then presented
a class of permutation polynomials of the type (1) over F2n . Moreover, they showed the
relation between a Maiorana-McFarland’s (M-M) bent function with an affine derivative
and a polynomial with a linear structure.

Bent functions are the most famous Boolean functions since they achieve the upper
bound on nonlinearity [15]. Bent functions play an important role in the design and analysis
of stream ciphers [16] in that they resist linear attacks in the best manner [3, 15]. Although
many concrete constructions of bent functions are known [1, 2, 17, 18], the general structure
of bent functions is still unclear. In particular a complete classification of bent functions
seems hopeless today and it can therefore be useful to focus on special families. When
effective constructions are considered, there are two main classes of bent functions, the
M-M class and the partial spreads (PS) class.

The M-M class of bent functions was first proposed by Maiorana and McFarland
[19]. Based on Walsh-Hadamard matrices (Sylvester-type Hadamard matrices), Preneel

et al. [20] have presented the truth-tables of all the 22
k
(2k!) M-M bent functions on 2k

variables since 1990. However, the ANF of a 2k-variable M-M bent function has not been
simply obtained for large k in that Butterfly algorithm [21] to compute the ANF of an 2k-
variable Boolean function from its truth-table requires O(2k22k) time. Currently, Butterfly
algorithm is still the best algorithm for computing the ANF of a Boolean function from its
truth-table. We also know that the complexity of the ANF of a function is coherent with
its algebraic complexity, i.e., its implementation with and/xor gates. In addition, the
algebraic degree of a Boolean function can be directly characterized by its ANF. Hence,
it is important to efficiently propose the ANFs of the M-M bent functions.

In this paper, we study the constructions of permutation polynomials of the shape
G(X)⊕ γTr(H(X))) over F2n and present a algorithm for computing the ANFs of M-M
bent functions. Firstly, we present a mapping function which transforms a Boolean function
on n variables to a univariate function over F2n . Moreover, based on the presented mapping
function, we propose tow methods for constructing two classes of univariate functions with
a linear structure. In addition, we show that

1. For n odd, 22
n−1

permutation polynomials of type (1) over F2n can be obtained, where
G(X) = X(X ⊕ 1). In addition, the permutation polynomials presented in [14, Propo-
sition 5] belong to the set of the 22

n−1
permutation polynomials.

2. If n is odd, then 22
n−1−1 permutation polynomials of type (1) over F2n can be obtained

for any permutation polynomial G(X); If n is even, then 22
n−1+1 − 1 permutation

polynomials of type (1) over F2n can be obtained for any permutation polynomial
G(X).

At last, it is shown that the computational complexity of this algorithm is O(k(k + 1)2k)
which is much smaller than that of Butterfly algorithm.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 2

2 Preliminaries

Let F2n be the finite field of 2n elements. For any set E, we will denote E\{0} by E∗ and
the cardinality of E by ‖E‖. Any polynomial F (X) ∈ F2n [X] defines a function

F : F2n → F2n

x 7→ F (x)

which is called the associated function of F (X). Recall that any function of a finite field
into itself is a given by a polynomial. Throughout the paper, we identify a polynomial
with its associated function. The weight of an integer is the Hamming weight of the 2-
adic expression of the integer. The degree of a polynomial F (X) defined over F2n is the
maximum of weights of the exponents of X in F (X). In addition, a permutation polynomial
over F2n defines a bijective function from F2n to itself.

For any k dividing n, the function Trnk : F2n → F2k is defined as

Trnk (x) = x⊕ x2k ⊕ x22k ⊕ . . .⊕ x2k(n/k−1)
, x ∈ F2n .

it will be denoted by Tr(x) when k = 1.

Definition 1 Let m and n be positive integers. Let F : F2n → F2m. For a ∈ F2n, the
function DaF given by

DaF (x) = F (x)⊕ F (x⊕ a)

is called the derivative of F in the direction of a. Further, a ∈ F ∗2n is said to be a linear
structure of F if the function DaF is constant. a ∈ F ∗2n is said to be an affine derivative
of F if the function DaF is an affine function.

By definition, it is clear that if a ∈ F2n is a linear structure of F , then

F (x)⊕ F (x⊕ a) = F (0)⊕ F (a) = c, for all x ∈ F2n ,

where c ∈ F2m . a is called c-linear structure of F .
Let Fn

2 denote the vector space of 2n binary n-tuples. The vector space Fn
2 can easily

be identified to the field F2n . This is done by choose a basis {α1, . . . , αn} for F2n over F2.
Then an element x ∈ F2n can be described as

⊕n
i=1 xiαi, i.e., we can identify x to the

n-tuple
(x1, x2, . . . , xn) ∈ Fn

2 .

The number of nonzero xi’s is the Hamming weight of (x1, x2, . . . , xn), denote by wt(x1, x2,
. . . , xn), and any function f : Fn

2 → F2 is an n-variable Boolean function. Let Bn be the
set of all n-variable Boolean functions from Fn

2 to F2. The Hamming weight wt(f) of a
Boolean function f ∈ Bn is the weight of its truth-table. The Hamming distance d(f, g)
between two Boolean functions f and g is the Hamming weight of their difference f ⊕ g.

Any Boolean function on n variables has a unique representation as a multivariate
polynomial over F2, called the algebraic normal form(ANF), of the special form:

f(x1, . . . , xn) =
⊕

I⊆{1,2,...,n}
aI
∏
i∈I

xi

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 3

where the aI ∈ F2. The terms
∏

i∈I xi are called monomials. The algebraic degree deg(f)
of a Boolean function f equals the maximum degree of those monomials whose coefficients
are nonzero in its algebraic normal form. A Boolean function is affine if it has degree at
most 1. The set of all affine functions is denoted by An. An affine function with constant
term equal to 0 is called a linear function. Any linear function on Fn

2 is denoted by
ω · (x1, . . . , xn) = ω1x1 ⊕ . . .⊕ ωnxn where ω = (ω1, . . . , ωn) ∈ Fn

2 .

Definition 2 Let x = (x1, . . . , xn) ∈ Fn
2 . An (n, n)-function φ(x)=(φ1(x), φ2(x), . . . , φn(x))

is called a Boolean permutation if the number of solutions (x) of φ(x) = a is exactly 1
for any a ∈ Fn

2 , where φ1, . . . , φn are its coordinate Boolean function.

It is well known that there exists a simple divide-and-conquer Butterfly algorithm [21]
to compute the ANF of a Boolean function from its truth-table (or vice-versa). In what
follows, we first introduce this algorithm.
Butterfly algorithm: For every u = (u1, u2, . . . , un) ∈ Fn

2 , the coefficient au of
∏

i∈u xi
in the ANF of f equals ⊕

(x1,...,xn−1)�(u1,...,un−1)

[f(x1, . . . , xn−1, 0)] if un = 0 and⊕
(x1,...,xn−1)�(u1,...,un−1)

[f(x1, . . . , xn−1, 0)

⊕ f(x1, . . . , xn−1, 1)] if un = 1,

where (x1, x2, . . . , xn) � u if and only if sup(x1, x2, . . . , xn) ⊆ sup(u), sup(u) = {i|ui 6= 0}.
Hence if, in the truth-table of f , the binary vectors are ordered in lexicographic or-
der, with the bit of higher weight on the right (for instance), the table of the ANF
equals the concatenation of those of the (n− 1)-variable functions f(x1, . . . , xn−1, 0) and
f(x1, . . . , xn−1, 0)⊕ f(x1, . . . , xn−1, 1). We deduce the following recursive algorithm:

1. write the truth-table of f , in which the binary vectors of length n are in lexicographic
order as described above;

2. let f0 be the restriction of f to Fn−1
2 × {0} and f1 the restriction of f to Fn−1

2 × {1};
the truth-table of f0 (resp. f1) corresponds to the upper (resp. lower) half of the table
of f ; replace the values of f1 by those of f0 ⊕ f1;

3. apply recursively step 2, separately to the functions now obtained in the places of f0
and f1.

When the algorithm ends (i.e., when it arrives to functions on one variable each),
the global table gives the values of the ANF of f . The computational complexity of this
algorithm is O(n2n).

3 Permutation Polynomials With Linear Structure

The permutation polynomials of shape

F (X) = G(X)⊕ γTr(H(X)),

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 4

where G(X), H(X) ∈ F2n [X] and γ ∈ F2n , have been studied in [11, 13, 14]. In this section
we describe two classes of such permutation polynomials. Before that, we first present two
theorems in the following.

Theorem 1 Let (y1, . . . , yn) ∈ Fn
2 and x ∈ F2n. Let ψ be a mapping which satisfies

ψ

(⊕
I⊆{1,2,...,n}

aI
∏
i∈I

yi

)
=

⊕
I⊆{1,2,...,n}

aI
∏
i∈I

x2
i−1
, (2)

where the aI ∈ F2. Let h(y1, . . . , yn) ∈ Bn and H(x) = ψ(h(y1, . . . , yn)). We have

h(y1, . . . , yn)⊕ h((y1, . . . , yn)⊕ 1) = c

for all (y1, . . . , yn) ∈ Fn
2 (i.e., 1 is a c-linear structure of h(y1, . . . , yn)) if and only if

H(x)⊕H(x⊕ 1) = c

for all x ∈ F2n, where c ∈ F2, 1 = (1, . . . , 1) ∈ Fn
2 .

Proof. Without loss of generality, we set h(y1, . . . , yn) =
⊕

I⊆{1,2,...,n}
aI
∏
i∈I

yi. Thus, we have

H(x) =
⊕

I⊆{1,2,...,n}
aI
∏
i∈I

x2
i−1

. Furthermore,

h((y1, . . . , yn)⊕ 1) =
⊕

I⊆{1,2,...,n}
aI
∏
i∈I

(yi ⊕ 1), (3)

and
H(x⊕ 1) =

⊕
I⊆{1,2,...,n}

aI
∏
i∈I

(x⊕ 1)2
i−1
. (4)

We also know that F2n is a finite field with characteristic 2. Therefore, (x ⊕ 1)2
i−1

=
x2

i−1 ⊕ 1. Moreover, the Equation (4) can be represented as follows:

H(x⊕ 1) =
⊕

I⊆{1,2,...,n}
aI
∏
i∈I

(x2
i−1 ⊕ 1). (5)

Combining Eqs. (3) and (5), we know that

H(x)⊕H(x⊕ 1) = c

if h(y1, . . . , yn)⊕ h((y1, . . . , yn)⊕ 1) = c for all (y1, . . . , yn) ∈ Fn
2 , and Vice Versa.

Next, we discuss the properties of the Boolean functions which have a nonzero linear
structure.

Theorem 2 Let h(y1, . . . , yn) ∈ Bn and S = {(y1, . . . , yn)|h(y1, . . . , yn) = 1}. Let S̃ =
{(y1, . . . , yn)⊕ 1|h(y1, . . . , yn) = 1}. Then,

1. S = S̃ if and only if the vector 1 is a 0-linear structure of h(y1, . . . , yn).

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 5

2. S ∪ S̃ = Fn
2 if and only if the vector 1 is a 1-linear structure of h(y1, . . . , yn).

Proof. Clearly, S̃ = {(y1, . . . , yn)|h(y1 ⊕ 1, . . . , yn ⊕ 1) = 1}.

1. According to the definitions of S and S̃, it is obvious that S = S̃ if and only if
h(y1, . . . , yn) = h((y1, . . . , yn)⊕ 1) for all x ∈ Fn

2 .

2. From the definitions of S and S̃, we know that ‖ S ‖=‖ S̃ ‖. If S ∪ S̃ = Fn
2 , then

‖ S ‖=‖ S̃ ‖= 2n−1 and S ∩ S̃ = ∅. For any vector α ∈ Fn
2 , we have α ∈ S or

α ∈ S̃, that is, h(α)⊕ h(α⊕ 1) = 1. Conversely, if the vector 1 is a 1-linear structure
of h(y1, . . . , yn), i.e., h(y1, . . . , yn) ⊕ h((y1, . . . , yn) ⊕ 1) = 1. Further, we know that
h((y1, . . . , yn)⊕1) = h(y1, . . . , yn)⊕ 1 and wt(h(y1, . . . , yn)) = wt(h((y1, . . . , yn)⊕1)).
By the definitions of S and S̃, we have S ∪ S̃ = Fn

2 .

3.1 Permutation Polynomials from Boolean Functions with a 1-linear
Structure

Let G(X) = L(X) be a linearized polynomials over F2n . In this subsection, we present
a class of permutation polynomials over a finite field. In [11], a class of permutation
polynomials was presented by Charpin and Kyureghyan.

Proposition 1 [11, Lemma 4] Let L : F2n → F2n be a linear 2-to-1 mapping with kernel
{0, α} and H : F2n → F2n. If for some γ ∈ F2n the mapping

N(x) = L(x)⊕ γTr(H(x))

is a permutation of F2n, then γ does not belong to the image set of L. Moreover, for such
an element γ the mapping N(x) is a permutation if and only if α is a 1-linear structure
of Tr(H(x)).

Based on Proposition 1, Charpin and Sarkar [14] presented a fact as follows.

Corollary 1 [14] Let H : F2n → F2n be a mapping. If H(x) has a linear structure α, then
α is also a linear structure Tr(H(x)). Moreover, if α is a 1-linear structure of Tr(H(x)),
then

N(x) = x(x⊕ α)⊕ γTr(H(x))

is a permutation with linear structure α, where Tr(γ/α2) 6= 0.

Note that γ does not belong to the image set of x(x ⊕ α) in that Tr(γ/α2) 6= 0 (i.e.,
x2 ⊕ αx⊕ γ 6= 0 for any x ∈ F2n).

The next result is a direct consequence of Proposition 1 and Corollary 1.

Corollary 2 Let n be odd and H : F2n → F2n be a mapping. If 1 is a 1-linear structure
of H(x), then

N(x) = x(x⊕ 1)⊕ γTr(H(x)) (6)

is a permutation which has 1 as a γ-linear structure, where Tr(γ) 6= 0.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 6

Proof. Clearly, 1 is a 1-linear structure of Tr(H(x)) in that n is odd. From Proposition
1 and Corollary 1, N(x) is a permutation, that is, N(X) is a permutation polynomial
over F2n . In addition, N(x)⊕N(x⊕ 1) = γ(Tr(H(x)⊕H(x⊕ 1)) = γ, so 1 is a γ-linear
structure of N(x).

In the sequel, we put forward a method to construct a class of functions such that they
satisfy a stringent condition given in Corollary 2.

From Theorem 1 and Theorem 2, the Boolean function H(x) such that H(x)⊕H(x⊕
1) = 1 can be easy direct constructed as we show now.

Construction 3 Let n be a positive integer.

Step 1 Set i = 1, S = ∅ and M = ∅;
Step 2 For i = i+ 1, choose y(i) in Fn

2 \M ;

Step 3 Set M = M ∪ {y(i), y(i) ⊕ 1}, S = S ∪ {y(i)};
Step 4 If i < 2n−1, goto Step 2; otherwise goto Step 5;

Step 5 Let S be the support set of h (i.e., S = {(y1, . . . , yn)|h(y1, . . . , yn) = 1}). Compute
the ANF of h(y1, . . . , yn) by using the Butterfly algorithm;

Step 6 Present the function H(x) by using the mapping φ defined as in Theorem 1.

At the end, we can construct a function H(x) which has 1 as a 1-linear structure.

Theorem 4 Let n be odd. Then we are able to obtain 22
n−1

permutation polynomials of
type (1) over F2n

Proof. We know that Fn
2 =

⋃
i=1,2,...,2n−1

{
y(i), y(i) ⊕ 1

}
, where y(i) 6= y(j) and y(i)⊕1 6= y(j)

if i 6= j. Therefore, there are 22
n−1

different sets S such that S ∪ S̃ = Fn
2 since there are

two possibilities for any pairs {y(i), y(i) ⊕ 1}. That is to say, based on Theorem 2 and
Construction 3, we are able to construct 22

n−1
functions over F2n , which have a 1-linear

structure. By Corollary 2, we are able to obtain 22
n−1

permutations of type (6) over F2n

for n odd. Then, 22
n−1

permutation polynomials of type (1) over F2n can be obtained.

Remark 1 For n odd, there are 2n affine functions on n variables such that 1 is their 1-
linear structure. Thus, among the constructed 22

n−1
functions over F2n, there are 22

n−1−2n

functions which are not affine functions over F2n and satisfy a stringent condition given
in Corollary 2.

In [14, Proposition 5], we know N(x) = x(x⊕1)⊕γTr(H(x)) is a permutation, where
H(x) = xs ⊕ x2

n−1
(xs ⊕ (x ⊕ 1)s ⊕ 1), γ satisfies Tr(γ) 6= 0, and 1 ≤ s ≤ 2n − 2.

From Theorem 1, it is obvious that the permutations presented in [14, Proposition 5] are
particular cases of permutations in Theorem 4.

Example 1 Let (y1, y2, . . . , y5) ∈ F 5
2 . According to Construction 3, we obtain a set S =

{(0)2, (3)2, (5)2, (6)2, (8)2, (14)2, (15)2, (18)2, (19)2, (20)2, (21)2, (22)2, (24)2, (27)2, (29)2, (30)2,

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 7

where (l)2 denotes the binary expression of integer l < 32 (i.e., (5)2 = (0, 0, 1, 0, 1)). By
using Butterfly algorithm, we get the ANF of h(y1, . . . , y5) as follows:

h(y1, . . . , y5) =y5y4y3y2 ⊕ y5y4y3y1 ⊕ y5y4y2y1 ⊕ y5y4y1
⊕y5y3y2y1 ⊕ y5y3y2 ⊕ y4y3y2y1 ⊕ y4y3y1
⊕y4y2y1 ⊕ y5y4 ⊕ y5y1 ⊕ y5 ⊕ y3 ⊕ y2 ⊕ y1 ⊕ 1.

Further, by using the mapping φ defined as in Theorem 1, we have

H(x) =x30 ⊕ x29 ⊕ x27 ⊕ x25 ⊕ x23 ⊕ x22 ⊕ x24 ⊕ x17
⊕x16 ⊕ x15 ⊕ x13 ⊕ x11 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1.

Thus, we present a permutation polynomial G(X) = X(X ⊕ 1) ⊕ γTr(H(X)) over F2n,
where

H(X)=X30 ⊕X29 ⊕X27 ⊕X25 ⊕X23 ⊕X22 ⊕X24 ⊕X17

⊕X16 ⊕X15 ⊕X13 ⊕X11 ⊕X4 ⊕X2 ⊕X1 ⊕ 1.

3.2 Permutation Polynomials from Boolean Functions with a 0-linear
Structure

Let G(X) be a permutation polynomial over F2n . In [11], a class of permutation polyno-
mials over F2n was presented as follows.

Proposition 2 [11, Theorem 2] Let G(X), H(X) ∈ F2n [X], γ, x ∈ F2n and G(X) be a
permutation polynomial. Then

F (X) = G(X)⊕ γTr(H(X))

is a permutation polynomial over F2n if and only if H(X) = R(G(X)), where R(X) ∈
F2n [X] and γ is a 0-linear structure of the Boolean function Tr(R(x)).

Charpin and Kyureghyan [11] presented two classes of permutation polynomials of
type (1). From Proposition 2, it follows that a new permutation polynomial of type (1) is
obtained by substituting G(X) into a permutation polynomial of shape X ⊕ γTr(R(X)).
Thus, for a given permutation polynomial G(X), a new permutation polynomial F (X)
over F2n can be obtained if we construct a new polynomial R(X) over F2n .

According to Proposition 2, we have a corollary in the following.

Corollary 3 Let R(X) ∈ F2n [X]. Then

F (X) = X ⊕ Tr(R(X)) (7)

is a permutation polynomial over F2n if and only if 1 is a 0-linear structure of the Boolean
function Tr(R(x)).

Remark 2 Based on Construction 3, we can obtain 22
n−1

functions R(x) with 1-linear
structure over F2n. Thus, 22

n−1
Boolean functions Tr(R(x)) with 0-linear structure on

n variables can be presented for even n, that is, 22
n−1

permutation polynomials of type
(7) over F2n can be proposed for n even. Therefore, while n is even, we are able to obtain
22

n−1
new permutation polynomials of type (1) over F2n for a given permutation polynomial

G(X) by using Construction 3.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 8

Clearly, the permutation polynomial F (X) in Corollary 3 has 1-linear structure. Next
we present a construction of R(x) as follows.

Construction 5 Let n be a positive integer. Let P < 2n−1 be a positive integer as well.
Let S = ∅.

Step 1 Set i = 1;

Step 2 For i = i+ 1, choose y(i) in Fn
2 \S;

Step 3 Set S = S ∪ {y(i), y(i) ⊕ 1};
Step 4 If i < P , goto Step 2; otherwise goto Step 5;

Step 5 Let M be the support set of h(y1, . . . , yn). Compute the ANF of h(y1, . . . , yn) by
using the Butterfly algorithm;

Step 6 Present the function R(x) by using the mapping φ defined as in Theorem 1.

For a given P ,
(
2n−1

P

)
sets S, such that S = S̃, can be obtained by using Construction 5.

Theorem 6 For n odd, we are able to obtain 22
n−1 − 1 permutation polynomials of type

(7) over F2n. For n even, we are able to obtain 22
n−1+1 − 1 permutation polynomials of

type (7) over F2n.

Proof. From Construction 5, we know that 22
n−1 − 1 =

∑2n−1

p=1

(
2n−1

P

)
sets S(⊆ Fn

2) such

that S = S̃ can be constructed. That is, 22
n−1 − 1 functions with a 0-linear structure can

be constructed. Thus, combining Corollary 3 and Construction 5, we can obtain 22
n−1 − 1

permutation polynomials of type (7) over F2n for any n.

According to Remark 2, we know that 22
n−1

permutation polynomials of type (7) over
F2n can be obtained, where n is even. Combining Construction 3 and 5, we are able to
construct

22
n−1+1 − 1 = 22

n−1 − 1 + 22
n−1

permutation polynomials of type (7) over F2n for n even.

Remark 3 From Proposition 2, we know that a new permutation polynomial of type (1)
is obtained by substituting G(X) into a permutation polynomial of shape F (X) = X ⊕
Tr(R(X)). Thus, for any permutation polynomial G(X), 22

n−1−1 permutation polynomials
of type (1) over F2n are able to be obtained for n odd, and 22

n−1+1 − 1 permutation
polynomials of type (1) over F2n can be obtained for n even.

4 Fast Algorithm for Computing Algebraic Normal Form of
Maiorana-McFarland’s bent Functions

In this section, we exhibit a fast algorithm for computing the ANFs of the M-M bent
functions. From now on, we assume that n = 2k and x = (x1, . . . , xk) ∈ F k

2 , y =
(y1, . . . , yk) ∈ F k

2 . In addition, we denote by l the 2-adic expression of the integer l (i.e.,
3 = (1, 1, 0, . . . , 0) ∈ F k

2).

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 9

The nonlinearity of f ∈ Bn is its distance from the set of all n-variable affine functions,
i.e.,

Nf = min
g∈An

(d(f, g)).

Boolean functions used in cryptographic systems must have high nonlinearity to with-
stand linear and correlation attacks. It is upper bounded by 2n−1 − 2n/2−1 because of the
so-called Parseval’s equation [22]

∑
ω∈Fn

2
(Wf (ω))2 = 22n.

A Boolean function is called bent function if its nonlinearity equals 2n−1 − 2n/2−1,
where n is even [15].

Bent functions have been widely investigated since the 80s of the last century. The
original Maiorana-McFarland class [23] is the set of all the (bent) Boolean functions on
F 2k
2 = {(x, y), x, y ∈ F k

2 } of the form:

f(y, x) = φ(y) · x⊕ g(y)

where φ(y) = (φ1(y), φ2(y), . . . , φk(y)) is any permutation on F k
2 and g(y) is any Boolean

function on F k
2 . In 2004, Carlet [23] indicated that there existed a one-to-one correspon-

dence between Boolean permutations and the original M-M class of bent functions.

Lemma 1 [23] Let x ∈ F k
2 , y ∈ F k

2 , φi(y) with 1 ≤ i ≤ k be a k-variable Boolean
function, and g(y) be any k-variable Boolean function. A 2k-variable Boolean function
f(y, x) = φ(y) · x⊕ g(y) is a bent function if and only if

φ(y) = (φ1(y), φ2(y), . . . , φk(y))

is a Boolean permutation.

Let Hn = [hij]2n×2n be the Walsh-Hadamard matrix that can be recursively defined
as

Hn =

[
1 1
1 −1

]
⊗Hn−1, H0 = [1].

Here ⊗ denotes the Kronecker product between matrices. It is easily seen that H2
n = 2nI2n ,

where I2n denotes the unit matrix of size 2n.
Let the matrix An = [aij]2n×2n be the associated matrix of Hn, where aij =

1−hij

2 .
That is, if hij = 1 (resp. hij = 0), then aij = 0 (resp. aij = 1).

As early as in 1990, Preneel et al. [20] presented the truth-tables of all the 22
k
(2k!)

M-M bent functions on 2k variables by using Walsh-Hadamard matrixes.

Lemma 2 [20] Let k be an integer. Consider the rows of the matrix Ak. The concatenation

of the 2k rows or their complement in arbitrary order results in 22
k
(2k!) different bent

functions on 2k variables.

By using Lemma 2, we can obtain the the truth-tables of all the 22
k
(2k!) M-M bent

functions on 2k variables.
We present an algorithm for computing the ANF of f(x, y), which is a M-M bent

function. Before that, we first present a theorem.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 10

Theorem 7 Let x, y ∈ F k
2 and f(x, y) = φ(y) ·x⊕g(y) be a 2k-variable Boolean function.

Let [f(l)] be the truth-table of f(x, y), where l = 0, 1, . . . , 22k − 1. Then

[f(0), f(2k), f(2 · 2k), f(3 · 2k), . . . , f((2k − 1)2k)]

is the truth-table of g(y). Furthermore,

[f(2i−1), f(2k + 2i−1), . . . , f((2k − 1)2k + 2i−1)]

is the truth-table of φ(i)(y)⊕ g(y), where i = 1, 2, . . . , k.

Proof. Since f(x, y) = φ(y) · x ⊕ g(y). For x = (0, . . . , 0) ∈ F k
2 , we have f(0, y) = g(y).

Clearly, [f(0), f(2k), . . . , f((2k − 1)2k)] is the truth-table of g(y).

For x = e(i) ∈ F k
2 , we have f(e(i), y) = φ(i)(y) ⊕ g(y), where e(i) represents a vector

with the ith entry 1 and others 0. It is also clear that

[f(2i−1), f(2k + 2i−1), . . . , f((2k − 1)2k + 2i−1)]

is the truth-table of φ(i)(y)⊕ g(y), where i = 1, 2, . . . , k.

According to Lemma 1, we can obtain a Boolean permutation for arbitrary M-M
bent function. From Theorem 7, if we have truth-table of a M-M bent function f(x, y)
on 2k variables, then the truth-table of the k-variable Boolean permutation φ(y) (which
corresponds to f(x, y)) can be easily obtained.

By Theorem 7 and Butterfly algorithm, we present an fast algorithm for computing
the ANF of a M-M bent function in the following.

Algorithm 1 Let x, y ∈ F k
2 . Let [f(l)] be the truth-table of the M-M bent f(x, y) ∈ B2k,

where l = 0, 1, . . . , 22k − 1. Thus, the truth tables of the k-variable Boolean permutation
φ(y) (which corresponds to f(x, y)) can be obtained. Based on Butterfly Algorithm, we
deduce the following algorithm:

Step 1 Write the truth-table of f(0, y) = g(y), in which the binary vectors of length k
are in lexicographic order as described Algorithm 2;

Step 2 Apply the Butterfly algorithm to present the ANF of g(y). Set i = 1;

Step 3 Exhibit the truth-table of φi(y)⊕ g(y);

Step 4 Apply the Butterfly algorithm to present the ANF of φi(y)⊕ g(y), i = i+ 1;

Step 5 If i ≤ k, goto Step 3; else goto Step 6;

Step 6 Obtain the ANF of f(x, y) = φ(y) · x⊕ g(y).

When the algorithm ends, the global table gives the values of the ANF of f .

Clearly, using Algorithm 1, the ANF of a M-M bent functions can be computed with
a computational complexity O((k+ 1)k2k). In terms of the M-M bent functions, the com-
putational complexity of Algorithm 1 is much smaller than the computational complexity
(O(2k · 22k)) of the Butterfly algorithm. Thus, for k < 40, we can quickly compute the
ANF of a M-M bent function on 2k variables by using Algorithm 1.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 11

5 Conclusion

In this paper, we presented two classes of permutation polynomials over a finite field. We
firstly proposed a mapping which transforms a Boolean function to a univariate function
over a finite field. Further, we introduced two effective methods to construct two classes
of univariate functions with a linear structure. Based on the two classes of functions, we
proposed many permutation polynomials of type (1) over a finite field. At last, we put
forward a method for computing the ANF of a M-M bent function. The problem of how
to determine whether a given polynomial has a linear structure is a difficult problem that
we would like to address in the future.

References

1. Zhang, F., Wei, Y., Pasalic, E., & Xia, S. (2018). Large sets of disjoint spectra plateaued functions
inequivalent to partially linear functions. IEEE Transactions on Information Theory, 64(4), 2987-2999.

2. Pasalic, E., Hodi, S., Zhang, F., & Wei, Y. (2018). Bent functions from nonlinear permutations and
conversely. Cryptography and Communications, 1-19.

3. Wei, Y., Pasalic, E., Zhang, F., & Hodi, S. (2017). Efficient probabilistic algorithm for estimating the
algebraic properties of Boolean functions for large n. Information Sciences, 402, 91-104.

4. Zha, Z., Hu, L., & Zhang, Z. (2018). New results on permutation polynomials of the form (x p m x+
) s+ x p m+ x over p 2m. Cryptography and Communications, 10(3), 567-578.

5. Xu, X., Li, C., Zeng, X., & Helleseth, T. (2018). Constructions of complete permutation polynomials.
Designs, Codes and Cryptography, 86(12), 2869-2892.

6. Wang, Y., Zha, Z., & Zhang, W. (2018). Six new classes of permutation trinomials over F33k . Applicable
Algebra in Engineering, Communication and Computing, 29(6), 479-499.

7. Zhang, F., Hu, Y., Xie, M., Gao, J., & Wang, Q. (2012). Constructions of cryptographically significant
boolean permutations. Appl. Math, 6(1), 117-123.

8. Zha, Z., & Hu, L. (2012). Two classes of permutation polynomials over finite fields. Finite Fields and
Their Applications, 18(4), 781-790.

9. Li, N., Helleseth, T., & Tang, X. (2013). Further results on a class of permutation polynomials over
finite fields. Finite Fields and Their Applications, 22, 16-23.

10. Tu, Z., Zeng, X., & Hu, L. (2014). Several classes of complete permutation polynomials. Finite Fields
and Their Applications, 25, 182-193.

11. Charpin, P., & Kyureghyan, G. M. (2008, September). On a Class of Permutation Polynomials over
F2n . In International Conference on Sequences and Their Applications (pp. 368-376). Springer, Berlin,
Heidelberg.

12. Dubuc, S. (2001). Characterization of linear structures. Designs, Codes and Cryptography, 22(1),
33-45.

13. Charpin, P., & Kyureghyan, G. (2009). When does G (x)+ Tr (H (x)) permute Fpn?. Finite Fields
and Their Applications, 15(5), 615-632.

14. Charpin, P., & Sarkar, S. (2011). Polynomials with linear structure and MaioranaMcFarland construc-
tion. IEEE Transactions on Information Theory, 57(6), 3796-3804.

15. Rothaus, O. S. (1976). On bent functions. Journal of Combinatorial Theory, Series A, 20(3), 300-305.
16. Carlet, C. (2010). Boolean functions for cryptography and error correcting codes. Boolean models and

methods in mathematics, computer science, and engineering, 2, 257-397.
17. Carlet, C., & Mesnager, S. (2011). On Dillons class H of bent functions, Niho bent functions and

o-polynomials. Journal of Combinatorial Theory, Series A, 118(8), 2392-2410.
18. Meng, Q., Chen, L., & Fu, F. W. (2010). On homogeneous rotation symmetric bent functions. Discrete

Applied Mathematics, 158(10), 1111-1117.
19. McFarland, R. L. (1973). A family of difference sets in non-cyclic groups. Journal of Combinatorial

Theory, Series A, 15(1), 1-10.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 12

20. Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., & Vandewalle, J. (1990, May). Propa-
gation characteristics of Boolean functions. In Workshop on the Theory and Application of of Cryp-
tographic Techniques (pp. 161-173). Springer, Berlin, Heidelberg.

21. Jansen, C. J. A. (1989). Investigations on nonlinear streamcipher systems: construction and evaluation
methods.

22. MacWilliams, F. J., & Sloane, N. J. A. (1977). The theory of error-correcting codes (Vol. 16). Elsevier.
23. Carlet, C. (2004). On the confusion and diffusion properties of MaioranaMcFarland’s and extended

MaioranaMcFarland’s functions. Journal of complexity, 20(2-3), 182-204.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-5 | Issue-3 | March,2019 13

